• 제목/요약/키워드: Main Fan

검색결과 279건 처리시간 0.027초

인자 분석을 통한 플라즈마 디스플레이 패널(Plasma Display Panel) 텔레비전에서의 냉각 홴 시스템 소음 저감 (Noise Reduction of PDP TV Cooling Fan System through Parameter Analysis)

  • 김규영;최민구;이덕주
    • 한국소음진동공학회논문집
    • /
    • 제16권2호
    • /
    • pp.107-114
    • /
    • 2006
  • The present experimental study deals with noise reduction and improvements in cooling performance in a plasma display panel (PDP) television (TV). The main ideas of the fan system noise reduction are maintenance of uniform inflow condition and reduction of the system loss, ${\Delta}P.$ The discrete noise is mainly related with the inflow condition therefore removing the structure which distorts inflow makes the discrete noise reduction. The broadband noise in PDP TV is related with the system losses which result from the presence of the fan downstream obstacle, PDP rear case. Through the modification of the distance and preventing the leakage flow between the fan and rear case, we can obtain the system loss and broadband noise reduction. Additionally we can reduce fan rotating speed because of increased flow rate which obtains from the reduction of system loss (resistance). Finally, 4.2 dB(A) noise reduction and $10\%$ increase in flow rate are achieved. From these results, we show that the reduction of system loss is the most effective way of the fan system noise reduction.

A Suggested Mechanism of Significant Stall Suppression Effects by Air Separator Devices in Axial Flow Fans

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.57-66
    • /
    • 2011
  • Radial-vaned air separators show a strong stall suppression effect in an axial flow fans. From a survey of existing literature on the effects and the author's data, a possible mechanism for the significant effects has been proposed here. The stall suppression is suggested to have been achieved by a combination of the following several effects; (1) suction of blade and casing boundary layers and elimination of embryos of stall, (2) separation and straightening of reversed swirling flow from the main flow, (3) induction of the fan main flow toward the casing wall and enhancement of the outward inclination of meridional streamlines across the rotor blade row, thus keeping the Euler head increase in the decrease in fan flow rate, and (4) reinforcement of axi-symmetric structure of the main flow. These phenomena have been induced and enhanced by a stable vortex-ring encasing the blade tips and the air separator. These integrated effects appear to have caused the great stall suppression effect that would have been impossible by other types of stall prevention devices. Thus the author would like to name the device "tip-vortex-ring assisted stall suppression device".

국내 석회석 광산 수갱 굴착에 의한 통기효과 분석 연구 (A Study on the Ventilation Effects of the Shaft Development at a Local Limestone Mine)

  • 이창우;응우엔 반득;키로 록키 키부야;김창오
    • 터널과지하공간
    • /
    • 제28권6호
    • /
    • pp.609-619
    • /
    • 2018
  • 주선풍기가 설치된 통기수갱이 굴착된 국내 석회석 광산에서 수행한 통기수갱의 통기효과 분석결과 자연통기 및 기계통기 효과가 뚜렷하게 나타났다. 수갱을 통하여 입기되는 자연통기량은 최대 $11.7m^3/s$이었으며 갱내 공기온도의 측정에 의하여 비교적 정확한 정량적 예측이 가능하였다. 선풍기 가동에 의한 배기 통기량은 $20.3{\sim}24.8m^3/s$로 통기량의 변동은 갱도내 장비의 이동에 의한 통기특성곡선의 상향이동에 따른 선풍기 운전점의 변화에 의한 결과이므로 통기저항의 저감 노력이 요구된다. 갱구로부터 수갱까지 총 1912 m 갱도내 난류확산계수는 $15m^2/s$, $18m^2/s$로 나타나 오염물질은 기류보다 상대적으로 빨리 확산되므로 공기질 제어를 위하여 신속한 배기가 요구된다. 따라서 통기용 수갱은 급격히 심부화 및 대형화되고 있는 국내석회석광산의 지속적 개발을 위한 필수적 갱내 환경제어 시설로 권장되어야할 것으로 판단된다.

냉장고 내 냉기순환용 축류홴에 의한 내부 블레이드-통과-주파수 소음 예측 (Computation of Internal BPF Noise of Axial Circulating Fan in Refrigerators)

  • 이승엽;허승;정철웅;김석로;서민영
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.454-461
    • /
    • 2009
  • Internal aeroacoustics of an axial fan used for circulating cold air in refrigerators are computed by using the hybrid method where CFD, acoustic analogy and BEM techniques are utilized. The unsteady flow field around the axial fan is predicted by solving the incompressible RANS equations with the conventional CFD techniques. Then, main noise sources are extracted from this unsteady flow field predictions using Acoustic Analogy. Lastly, BPF noise generated from an axial fan are predicted using these modeled sources combined with the tailed Green function techniques, which are numerically solved by the BEM technique. This hybrid model is validated by comparing the prediction with the experiment. Then, parameter studies are carried out, which suggest a capability of the current method as a design tool for the low-noise of the current axial fan system in a refrigerator.

진공청소기 흡입효율 개선을 위한 모터 주위의 유동해석 (Performance Improvement of a Vacuum Cleaner by CFD Analysis around Motor)

  • 박진우;기민철;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.522-525
    • /
    • 2008
  • A vacuum cleaner is the widely used home equipment. However, it has a trouble with too much power consumption. Most losses occur at the centrifugal fan. To remedy this trouble the investigation of motor, which is the main component of vacuum cleaner, is required. The flow characteristics around the high-speed rotating centrifugal fan which is influenced by the very low inlet pressure is quite different from a commonly used fan. Hence it is quite difficult to analyze the flow by the experimental means or by the numerical simulation. In this research, it is aimed to improve the air-suction performance of a vacuum cleaner through the flow analysis around a motor. The efficiency of the centrifugal fan is affected by blade shape, blade number, blade pitch, etc. The influence of the shape of impeller on the flow is investigated in this study. The flow around the centrifugal fan is simulated by applying the moving mesh. To verify the validity of the computation results, the air flow rate and the pressure field to the cleaner is compared with the experimental data. All simulations are performed by using commercial code SC/Tetra. The calculated results show good agreement with the experimental ones and it is believed to be promising to use computational simulation in the improvement of the vacuum cleaner performance.

  • PDF

형상 최적화를 통한 축류송풍기의 설계 (Design of An Axial Flow Fan with Shape Optimization)

  • 서성진;최승만;김광용
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.603-611
    • /
    • 2006
  • This paper presents the response surface optimization method using three-dimensional Wavier-Stokes analysis to optimize the blade shape of an axial flow fan. Reynolds-averaged Wavier-Stokes equations with $k-{\epsilon}$ turbulence model are discretized with finite volume approximations using the unstructured grid. Regression analysis is used for generating response surface, and it is validated by ANOVA and t-statistics. Four geometric variables, i.e., sweep and lean angles at mean and tip respectively were employed to improve the efficiency. The computational results are compared with experimental data and the comparisons show generally good agreements. As a main result of the optimization, the total efficiency was successfully improved. Also, detailed effects of sweep and lean on the axial flow fan are discussed.

코깅토크 저감에 의한 BLDC Fan & Motor의 공진 소음 개선에 관한 연구 (Study on the Noise Reduction of BLDC Fan Motor by Cogging Torque Reduction)

  • 신현정;이은상
    • 전기학회논문지
    • /
    • 제62권9호
    • /
    • pp.1217-1222
    • /
    • 2013
  • It is very important to diminish noise source of electric motor systems that are used for home appliance area. We have studied on the noise reduction of BLDC motor, mainly focusing on reducing noise source from cogging torque. This noise source causes resonance of fan & motor systems. This study showed that the higher harmonic component of the cogging torque was the main factor for noise generation. Therefor, to reduce noise of bldc motor for refrigerator, this study suggested peanut shaped magnet which surface flux has similar sinusoidal wave form.

에어컨 실내기 터보팬의 소음 저감 (Noise Reduction of Turbo Fans for Air-Conditioner Indoor Units)

  • 김진백;최원석;구형모;이재권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.93-96
    • /
    • 2004
  • A turbo-fan for the 4-way cassette indoor units of air-conditioners has been investigated. The main purpose of this investigation is the reduction of the turbo-fan noise. In order to reduce the noise level, many design parameters of turbo-fans such as blade section, blade thickness, geometry of blade leading edge, blade width, blade angle and bellmouth depth have been studied. With the experimental data of these parameters, a new turbo-fan was made for our system. The noise level of the new system was at least 3 dB(A) lower than that of the current in use.

  • PDF

축류팬 익단누설와류의 비정상 특성 (Unsteady Nature of a Tip Leakage Vortex in an Axial Flow Fan)

  • 장춘만;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.845-850
    • /
    • 2003
  • Unsteady nature of a tip leakage vortex in an axial flow fan operating at a design and off-design operating conditions has been investigated by measuring the velocity fluctuation in a blade passage with a rotating hotwire probe sensor. Two hot-wire probe sensors rotating with the fan rotor were also introduced to obtain the cross-correlation coefficient between the two sensors located in the vortical flow as well as the fluctuating velocity. The results show that the vortical flow structure near the rotor tip can be clearly observed at the quasi-orthogonal planes to a tip leakage vortex. The leakage vortex is enlarged as the flow rate is decreased, thus resulting in the high blockage to main flow. The spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region at higher flow rates than the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition.

  • PDF

프로펠러 홴 날개 위의 역류 유동 (Reverse Flow on Blade-Surface of Propeller Fan)

  • 김재원;남임우
    • 한국유체기계학회 논문집
    • /
    • 제4권2호
    • /
    • pp.7-14
    • /
    • 2001
  • Design and development of a propeller fan for a cooling tower have been accomplished by both numerical prediction of performance and experimental validation with a wind tunnel. Main interest lies on blade geometry of a fan for optimal design of aerodynamic performance. A commercial program, Fine/Turbo used for the present numerical estimation, gives us engineering information such as flow details near the blades and flow rate of the system. The numerical results are compared with precise experimental output and show good agreement in comparison between the two data. Also new proposed model of a blade shows improved performance relative to present running model in market.

  • PDF