• Title/Summary/Keyword: Main Control Valve

Search Result 159, Processing Time 0.029 seconds

Study on Attitude Control System of Rotary Implement Attached on Agricultural Tractor (트랙터 로타리 작업기용 자세 제어 시스템에 관한 연구)

  • Lee, J.Y.;Go, W.;Shim, J.S.;Shin, H.C.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.427-438
    • /
    • 1998
  • In Korea, rotary implements are mainly utilized in the tillage operation. The attitude control system for rolling phenominon of tractors, which in caused due to uneven ground surfaces and sinkage of tractor wheels, is one of the most important control systems in agricultural tractors. The attitude control system of a rotary implement, attached on tractors, was designed and fabricated in this study. The control system was largely composed of four main units; a setting unit, a detection unit, a controller and a hydraulic unit. The implement was controlled by control signals from a computer proportional to controlled errors, on/off action of two directional solenoide valve and lift cylinder on the right lift rod. Response characteristic experiments for the control system fabricated in this study were carried out indoors and outdoors. The results of experiments showed the response characteristics sufficient to use as the attitude control system of rotary implements for agricultural tractors.

  • PDF

A Study on Dynamics Analysis and Position Control of 5 D.O.F. Multi-joint Manipulater for Uncontact Remote Working (원격작업을 위한 5자유도 다관절 매니퓰레이터의 동특성 분석 및 위치제어에 관한 연구)

  • Kim, Hee-Jin;Jang, Gi-Wong;Kim, Seong-Il;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.87-99
    • /
    • 2022
  • We propoes a study on the dynamic characteristics analysis and position control of 5-degree multi-joint manipulators for untact remote working at construction sites and manufacturing plants. The main frame of freedom multi-joint manipulator consists of five elements, boom cylinder, boom cylinder, arm cylinder, bucket cylinder, and rotation joint and link. In addition, the main purpose of the proposed system is to realize the work of the manufacturing process or construction site by remote control. Motion control of the entire system is a servo valve control method by hydraulic servo cylinders for one to four joints, and a servo motor control method is applied for five joints. The reliability of the proposed method was verified through performance experiments by computer simulation.

Finite Element Analysis and Evaluation of Casting Defects of Steam Turbine Valve Casings of Power Plants (발전용 증기터빈 밸브 케이싱의 유한요소해석과 주조결함 평가 방법)

  • Lee Boo-Youn;Kim Won-Jin;Shin Hyun-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.571-578
    • /
    • 2005
  • Stresses of main stop valve and control valve casings for the steam turbines of power plants are analyzed by the finite element method. The stress intensity is obtained to check the results on the basis of the design criteria of ASME boiler and pressure vessel code. To verify accuracy of the finite element analysis. analyzed stresses are compared with those measured during the hydrostatic pressure test. Stress category drawings. which play an important role in evaluating casting defects, are produced from the analysis results, and important points in casting of the valve casings are discussed in terms of the stress category.

An Optimal Design of a two stage relief valve by Genetic Algorithm

  • Kim, seungwoo;doowan Im;Kyungkwan Ahn;Soonyong Yang;Lee, Byungryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.66.2-66
    • /
    • 2002
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all, a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determin...

  • PDF

A Study of Korean (Industrial) Standards for Pneumatic Servo Valve (공압서보밸브 KS규격 정립에 관한 연구)

  • 김동수;이원희;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1231-1234
    • /
    • 2003
  • Pneumatic servo valve which is widely applied in industrial world is advanced technology compounded with electric, electronic and machine. And It is consist of Linear Force Motor. Spool Commutation Mechanism and Microprocessor. In this study, we accomplished test method of Linear Force motor test, Static characteristic test, Dynamic characteristic test for KS(Koran industrial standard) of Pneumatic servo valve. we accomplished study about the main item of Static characteristic test which is related to unload flow characteristic test. And Dynamic characteristic test was step input test and frequency response test. Specially about frequency response test, There was a difficulty resulting from the time delay problem caused by the basic compressibility of air. In order to solve the problem in this study. we proposed two methods. First, displacement of the servo valve spool was directly measured by using a laser sensor. Second, method of calculating control flow by measuring pressure and temperature of chamber.

  • PDF

Analysis of In-cylinder Flow in a Miller Cycle Engine with Variable IVC for HEV (밀러사이클 적용 HEV 엔진 실린더의 가변흡기밸브 닫힘각에 따른 실린더내 유동해석)

  • Kim, Sangmyeong;Sung, Gisu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • For reduction of $CO_2$ emission emitted from combustion engine, the developed nations have been focused on R&D of hybrid electric vehicle. Further more, many automobile companies are researching on various techniques related to engine used in HEV to enhance fuel economy. One of key techniques is miller cycle that control a valve timing to reduce compression stroke for saving energy and increase expansion stroke for high power. In this study, it was investigated the in-cylinder flow characteristics of miller cycle with variable intake valve timing by using the ANSYS simulation code. For simulation, the key analytic parameter defined as intake valve closing timing and cam profile. As main results, it was shown that LIVC cause a lower pressure inside cylinder and had better control turbulence intensity.

Waterhammer For In-line Booster Pump (직결식 펌프의 수격현상)

  • Kim, S C.;Lee, K. B.;Kim, K. Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.208-216
    • /
    • 2004
  • The waterhammer occured when the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests of the waterhammer were carried out for PanGyo booster pumping station. The PanGyo pumuing station was installed booster pump of 6 sets and in-line pump of 2 sets. The main surge suppression device was equipped with the pump control valve and the surge relief valve as auxiliary. However, the pump control valve had not early controlled in the planned closing mode, and the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the shaft of the valve was damaged. After the addition surge suppression device was equipped with air chamber. Further more in-line pump is needed surge suppression device that the pumping station acquired the safety and reliability for the pressure surge.

  • PDF

Development of the Serial Data Transmission System for Pneumatic Valve System Control

  • Kim, Dong-Soo;Choi, Byung-Oh;Seo, Hyun-Seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1152-1156
    • /
    • 2003
  • For pneumatic valve system control, we need a serial data transmission system with high speed and reliability for information interchange between main computer and I/O devices. This paper presents a set of design techniques for a data communication system that is mainly used for pneumatic valve system control. For this purpose, we first designed hardware modules for an interface between central control module and local node that handles the operation of solenoid control valves. in addition, we developed a communication protocol for construction of rs-485 based multi-drop network and this protocol is basically designed with a kind of polling technique. Finally we evaluated performance of the developed system. the field test results show that, even under high noise environment, the data transmission of 375kbps rate is possible up to 1,500meter without using repeater. In addition, the system developed in this research is easily to be extended for a communication network because of its modular structure.

  • PDF

The Reduction of Generator Output Calculation by Using 6σ Method on Steam Turbine Simulator in a Nuclear Power Plant (6시그마 기법을 적용한 원자력 터빈 시뮬레이터의 발전기 출력 연산오차 저감)

  • Choi, In-Kyu;Kim, Jong-An;Park, Doo-Yong;Woo, Joo-Hee;Shin, Man-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1017-1022
    • /
    • 2011
  • This paper describes the improvement of the calculation by using $6{\sigma}$ method on steam turbine simulator in a nuclear power plant. The simulator is essential to not only verification and validation of control logic but also making sure of control constants in upgrading the long time used control system into the new one. And the dynamic model is a key point in that simulator. The model used during the retrofit period of the turbine controller in Kori Nuclear Power Plant makes difference in calculating generator output and control valve positions. That is because such operating data as the main steam pressure, the main steam temperature and control valve positions of Yongkwang #3 are different from those of Kori #4. Therefore, the model parameters must be tuned by using actual operating data for the high fidelity of simulator in calculating the dynamic characteristic of the model. This paper describes that the $6{\sigma}$ method is used in improvement of precision of generator output calculation in the steam turbine model of the simulator.

The improvement of control strategy in thermal power plant turbine system by nonlinear analysis (비선형성 해석에 의한 화력발전소 터어빈 제어계통에 관한 연구)

  • ;;Hwang, Jae-Ho;Seo, Jin-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.567-571
    • /
    • 1989
  • This paper describes the improvement of thermal power plant turbine control system by analyzing nonlinear characteristics. The turbine control depends on the frequency variation and boiler condition. The nonlinearity of turbine control is the result of governor/valve properties, steam condition and boiler thermal unbalance. Nonlinear analysis is divided into two; main steam valve position - turbine output anal governor response. Of course, every analysis must be done on considering plant operating condition. In this paper, after analyzing turbine control nonlinearity by numerical method and actual results, the sensitive operating load which corresponds to frequency is proposed, on guarranteed boiler stability. This idea is implemented at Pyung Tack thermal power plant, and the practical results are showed.

  • PDF