• Title/Summary/Keyword: Main Charge Explosive

Search Result 12, Processing Time 0.018 seconds

Probabilistic Estimation of Fully Coupled Blasting Pressure (밀장전 발파압력의 확률론적 예측)

  • Park, Bong-Ki;Lee, In-Mo;Kim, Dong-Hyun;Lee, Sang-Don
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.391-398
    • /
    • 2004
  • The propagation mechanism of a detonation pressure with fully coupled charge is clarified and the blasting pressure propagated in rock mass is derived from the application of shock wave theory. Probabilistic distribution is obtained by using explosion tests on emulsion and rock property tests on granite in Seoul and then the probabilistic distribution of the blasting pressure is derived from their properties. The probabilistic distributions of explosive properties and rock properties show a normal distribution so that the blasting pressure propagated in rock can be also regarded as a normal distribution. Parametric analysis was performed to pinpoint the most influential parameter that affects the blasting pressure and it was found that the detonation velocity is the most sensitive parameter. Moreover, uncertainty analysis was performed to figure out the effect of each parameter uncertainty on the uncertainty of blasting pressure. Its result showed that uncertainty of natural rock properties constitutes the main portion of blasting pressure uncertainty rather than that of explosive properties.

  • PDF

A Study on the Shelf-Life Prediction of the Domestic Single Base Propellants Ammunition : Based on 105mm High Explosive Propellants (국내 단기추진제 탄약의 저장수명 예측에 관한 연구 : 105미리 고폭탄 추진체를 중심으로)

  • Choi, Myoungjin;Park, Hyungju;Yang, Jaekyung;Baek, Janghyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.3
    • /
    • pp.36-42
    • /
    • 2014
  • Domestic 105mm HE (High Explosive) shell is composed of three parts that are Fuze, Projectile and Propellants. Among three parts, propelling charge of propellants part consists of single base propellants. It has been known that the lifespan of single base propellants is affected by a storage period. These are because Nitrocellulose (NC) which is the main component of propelling gunpowder can be naturally decomposed to unstable substances similar with other nitric acid ester. Even though it cannot be prevented fundamentally from being disassembled, a decomposition product ($NO_2$, $NO_3$, and $HNO_3$) and tranquillizer DPA (Diphenylamine) having high reactivity are added into a propellant to restrain induction of automatic catalysis by a decomposition product. The decay rate of the tranquillizer is also affected by a production rate of the decomposition product of NC. Therefore, an accurate prediction of the Self-Life is required to ensure against risks such as explosion. Hereupon, this paper presents a new methodology to estimate the shelf-life of single base propellants using data of ASRP (Ammunition Stockpile Reliability Program) to domestic 105mm HE (propelling charge of propellants part). We selected four attributes that are inferred to have influence on distribution of the DPA amount in a propellant from the ASRP dataset through data mining processes. Then the selected attributes were used as independent variables in a regression analysis in order to estimate the shelf-life of single base propellants.

Comparison of Blast Fragmentation Efficiencies from Conventional Bench and Double Air Deck Charge Blast Methods in Limestone Mine (석회석 광산에서 기존 일반발파와 이중분상 Air Deck 발파공법의 비교연구)

  • Kang, Dae-Woo;Hur, Won-Ho;Yang, Kook-Jung;Park, Dong-Chul
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.13-31
    • /
    • 2011
  • Air deck charge blast methods have been applied to improve the fragmentation in open cut bench blastings for mining developments. However, during large scale bench blasting operations, there exist some problems such as boulder productions due to explosive charge concentration. Especially, in case of lime stone mining, when air deck method is applied, there has been unintentionally concentrated on charging because the inside holes are often broken by erosion and decomposition. In this study, compared with general blasting, air deck blasting has been focused in lime stone mining. In other to maximize its efficiency, inside hole was examined by endoscope in advance and deck charge using air tube was applied to the section in which concentration might be taken place. Blasting efficiency, fragmentation, charging reduction rate, and total working hours (from charging to blasting) were the main object for comparing, and as a result, air deck was more efficient then the general blasting in all aspects except total working hours.

Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading

  • Abedini, Masoud;Zhang, Chunwei
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.441-461
    • /
    • 2021
  • Reinforced concrete (RC) columns are crucial in building structures and they are of higher vulnerability to terrorist threat than any other structural elements. Thus it is of great interest and necessity to achieve a comprehensive understanding of the possible responses of RC columns when exposed to high intensive blast loads. The primary objective of this study is to derive analytical formulas to assess vulnerability of RC columns using an advanced numerical modelling approach. This investigation is necessary as the effect of blast loads would be minimal to the RC structure if the explosive charge is located at the safe standoff distance from the main columns in the building and therefore minimizes the chance of disastrous collapse of the RC columns. In the current research, finite element model is developed for RC columns using LS-DYNA program that includes a comprehensive discussion of the material models, element formulation, boundary condition and loading methods. Numerical model is validated to aid in the study of RC column testing against the explosion field test results. Residual capacity of RC column is selected as damage criteria. Intensive investigations using Arbitrary Lagrangian Eulerian (ALE) methodology are then implemented to evaluate the influence of scaled distance, column dimension, concrete and steel reinforcement properties and axial load index on the vulnerability of RC columns. The generated empirical formulae can be used by the designers to predict a damage degree of new column design when consider explosive loads. With an extensive knowledge on the vulnerability assessment of RC structures under blast explosion, advancement to the convention design of structural elements can be achieved to improve the column survivability, while reducing the lethality of explosive attack and in turn providing a safer environment for the public.

Damage identification of masonry arch bridge under blast loading using smoothed particle hydrodynamics (SPH) method

  • Amin Bagherzadeh Azar;Ali Sari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.103-121
    • /
    • 2024
  • The smoothed particle hydrodynamics (SPH) method is a numerical technique used in dynamic analysis to simulate the fluid-like behavior of materials under extreme conditions, such as those encountered in explosions or high velocity impacts. In SPH, fluid or solid materials are discretized into particles. These particles interact with each other based on certain smoothing kernels, allowing the simulation of fluid flows and predict the response of solid materials to shock waves, like deformation, cracking or failure. One of the main advantages of SPH is its ability to simulate these phenomena without a fixed grid, making it particularly suitable for analyzing complex geometries. In this study, the structural damage to a masonry arch bridge subjected to blast loading was investigated. A high-fidelity micro-model was created and the explosives were modeled using the SPH approach. The Johnson-Holmquist II damage model and the Mohr-Coulomb material model were considered to evaluate the masonry and backfill properties. Consistent with the principles of the JH-II model, the authors developed a VUMAT code. The explosive charges (50 kg, 168 kg, 425 kg and 1000 kg) were placed in close proximity to the deck and pier of a bridge. The results showed that the 50 kg charges, which could have been placed near the pier by a terrorist, had only a limited effect on the piers. Instead, this charge caused a vertical displacement of the deck due to the confinement effect. Conversely, a 1000 kg TNT charge placed 100 cm above the deck caused significant damage to the bridge.

Probabilistic estimation of fully coupled blasting pressure transmitted to rock mass I - Estimation of peak blasting pressure - (암반에 전달된 밀장전 발파압력의 확률론적 예측 I - 최대 발파압력 예측을 중심으로 -)

  • Park, Bong-Ki;Lee, In-Mo;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.337-348
    • /
    • 2003
  • The propagation mechanism of a detonation pressure with fully coupled charge is clarified and the blasting pressure propagated in rock mass is derived from the application of shock wave theory. The blasting pressure was a function of detonation velocity, isentropic exponent, explosive density, Hugoniot parameters, and rock density. Probabilistic distribution is obtained by using explosion tests on emulsion and rock property tests on granite in Seoul and then the probabilistic distribution of the blasting pressure is derived from the above mentioned properties. The probabilistic distributions of explosive properties and rock properties show a normal distribution so that the blasting pressure propagated in rock can be also regarded as a normal distribution. Parametric analysis was performed to pinpoint the most influential parameter that affects the blasting pressure and it was found that the detonation velocity is the most sensitive parameter. Moreover, uncertainty analysis was performed to figure out the effect of each parameter uncertainty on the uncertainty of blasting pressure. Its result showed that uncertainty of natural rock properties constitutes the main portion of blasting pressure uncertainty rather than that of explosive properties. In other words, since rock property uncertainty is much larger than detonation velocity uncertainty the blasting pressure uncertainty is more influenced by the former than by the latter even though the detonation velocity is found to be the most influencing parameter on the blasting pressure.

  • PDF

Study on the Thermal Property and Aging Prediction for Pressable Plastic Bonded Explosives through ARC(Heat-wait-search method) & Isothermal Conditions (ARC(Heat-wait-search method)와 Isothermal 조건을 이용한 압축형 복합화약의 열적 특성 및 노화 예측 연구)

  • Lee, Sojung;Kim, Seunghee;Kwon, Kuktae;Jeon, Yeongjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • The thermal property is one of the most important characteristics in the field of energetic materials. Because energy materials release decomposition heat, differential scanning calorimetry (DSC) is frequently used for thermal analysis. However, thermodynamic events, such as melting can interfere with DSC kinetic analysis. In this study, we use isothermal mode for DSC measurement to avoid thermodynamic issues. We also merge accelerating rate calorimetry(ARC) data with DSC data to obtain a robust prediction results for small scale samples and for large scale samples as well. For the thermal property prediction, advanced kinetics and technology solutions(AKTS) programs are used.

Need for Development of Oriental Medicine-derived Systemic Treatments against Chronic Fatigue-associated Symptoms (만성피로의 체계화된 한의학적 치료법 연구의 필요성)

  • Cho, Jung-Hyo;Son, Chang-Gue
    • The Journal of Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.28-36
    • /
    • 2009
  • Objectives: Fatigue is a prevalent symptom encompassing both acute and chronic manifestations. Most fatigue symptoms can be cured by taking a rest or removing underlying causes. However, chronic fatigue is frequently problematic due to its duration and effect on quality of life. There are no particularly effective therapies for chronic fatigue of unknown causes, and patients in Korea usually visit an Oriental clinic. This study aimed to analyze the current status of treatments and patients with chronic fatigue, and then map out of a strategy for development of generalized-treatments for chronic fatigue in Oriental Medicine. Methods: Clinical information related to chronic fatigue was selected from various different databases such as PubMed, KoreaMed, KStudy, DBPIA, OIM, and KOMS. Also, to understand current tendency of medical examination and treatment related with chronic fatigue, we requested Health Insurance Review & Assessment Service for clinical datum from 2003 to 2007. Results: The medical fees of National Health Insurance related with fatigue show an explosive year-on-year increase. On the other hand, it has been decreasing annually in the western medical fields. To take charge of clinical fields related with chronic fatigue by Oriental Medicine, we should make a unified diagnostic system. Then, we should also make standard evaluation tools and develop herbal drugs according to this unified diagnostic system. Conclusions: Fatigue-related symptoms will be a main target of Oriental medicine in the future. We expect that various studies related with chronic fatigue will be undertaken hereafter.

  • PDF

Study on the thermal Property and Aging Prediction for Pressable Plastic Bonded Explosives through ARC(Heat-Wait-Search method) & isothermal conditions (ARC(Heat-Wait-Search method)와 isothermal 조건을 이용한 압축형 복합화약의 열적 특성 및 노화 예측 연구)

  • Lee, Sojung;Kim, Jinseuk;Kim, Seunghee;Kwon, Kuktae;Chu, Chorong;Jeon, Yeongjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.172-178
    • /
    • 2017
  • Thermal property is one of the important characteristic in the field of energetic materials. As the energy material is released during decomposition, DSC(Differential Scanning Calorimetry) is frequently used for the thermal analysis. In case of the dynamic DSC measurements, thermal dynamic change like melting is prevented from the thermal property measurements. And due to the predicting kg scale, the conditions of the heat exchange with the environment significantly is changed. In this study, As the method to resolve the problem, we predict the thermal aging property using the AKTS thermokinetic program from DSC measurements which performed isothermal method. Predicting the thermal aging properties from ARC(Accelerating Rate Calorimetry) measurement, we compare two results.

  • PDF

Evaluation of Fundamental Period of Rockfill Dam Using Blasting Vibration Test (발파진동실험을 이용한 사력댐의 고유주기 산정)

  • Kim, Nam-Ryong;Ha, Ik-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.185-192
    • /
    • 2012
  • The objective of this study is to present and verify a method for evaluating the fundamental period of a rockfill dam using artificially generated vibration from a blasting event. In this study, the artificial blasting vibration tests were carried out at the site adjacent to the existing Seongdeok Dam for the first time in Korea. The artificial vibrations were induced by 4 different types of blasting with the various depths of blasting boreholes and the various explosive charge weight. During the tests, the accelerations time histories were recorded at the crest of the dam. In this acceleration history, only free vibration decay part following the main vibration event was extracted and it was analyzed by frequency domain analysis using Fast Fourier Transform (FFT). From the results of FFT, the fundamental period of the target dam was evaluated. It is found that the effect of different blasting types on the fundamental period of the target dam is negligible and the fundamental period of the target dam can be consistently obtained by blasting vibration tests. Furthermore, it is found that the period of the target dam calculated by the method using blasting vibration test is similar to that obtained by the method of previous researchers using the real earthquake records. Therefore, in case that the earthquake record is not available, the fundamental period of a rockfill dam can be reasonably evaluated if blasting vibration test is allowed at the site adjacent to the dam.