• Title/Summary/Keyword: Mahout

Search Result 15, Processing Time 0.022 seconds

A Social Travel Recommendation System using Item-based collaborative filtering

  • Kim, Dae-ho;Song, Je-in;Yoo, So-yeop;Jeong, Ok-ran
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.7-14
    • /
    • 2018
  • As SNS(Social Network Service) becomes a part of our life, new information can be derived through various information provided by SNS. Through the public timeline analysis of SNS, we can extract the latest tour trends for the public and the intimacy through the social relationship analysis in the SNS. The extracted intimacy can also be used to make the personalized recommendation by adding the weights to friends with high intimacy. We apply SNS elements such as analyzed latest trends and intimacy to item-based collaborative filtering techniques to achieve better accuracy and satisfaction than existing travel recommendation services in a new way. In this paper, we propose a social travel recommendation system using item - based collaborative filtering.

A Study on Comparison Analysis of Collaborative Filtering in Java and R

  • Nasridinov, Aziz;Park, Young-Ho
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1156-1157
    • /
    • 2013
  • The mobile application market has been growing extensively in recent years. Currently, Apple's App Store has more than 400,000 applications and Google's Android Market has above 150,000 applications. Such growth in volumes of mobile applications has created a need to develop a recommender system that assists the users to take the right choice, when searching for a mobile application. In this paper, we study the recommendation system building tools based on collaborative filtering. Specifically, we present a study on comparison analysis of collaborative filtering in Java and R statistical software. We implement the collaborative filtering using Java's Apache Mahout and R's recommenderlab package. We evaluate both methods and describe the advantages and disadvantages of using them in order to implement collaborative filtering.

A Personalized Movie Recommender Systems using Hadoop (하둡을 이용한 개인화 영화 추천 시스템)

  • Kim, Se-jun;Park, Doo-soon;Hong, Min
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1135-1136
    • /
    • 2013
  • 인터넷의 발달함에 따라 데이터가 기존에 비해 기하급수적으로 늘어나게 되는 이른바 빅데이터 시대를 맞이하게 되었다. 이러한 빅데이터는 기존의 시스템으로 처리하기가 쉽지 않아 이를 처리하기 위해 하둡이 개발되었다. 하둡은 분산파일 시스템으로 기존의 시스템에 비해 빅데이터를 처리하는데 적합하며 이를 이용한 다양한 오픈 소스들이 등장하게 된다. 그중 기계학습 알고리즘을 구현한 오픈소스 Mahout은 추천 시스템을 구현하는데 적합하다. 이를 이용하여 기존에 구현한 개인화 영화 추천 시스템을 하둡 시스템으로 구현하고 기존의 XLMiner로 구현한 시스템과 결과를 비교해 본다.

A Study On Recommend System Using Co-occurrence Matrix and Hadoop Distribution Processing (동시발생 행렬과 하둡 분산처리를 이용한 추천시스템에 관한 연구)

  • Kim, Chang-Bok;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.468-475
    • /
    • 2014
  • The recommend system is getting more difficult real time recommend by lager preference data set, computing power and recommend algorithm. For this reason, recommend system is proceeding actively one's studies toward distribute processing method of large preference data set. This paper studied distribute processing method of large preference data set using hadoop distribute processing platform and mahout machine learning library. The recommend algorithm is used Co-occurrence Matrix similar to item Collaborative Filtering. The Co-occurrence Matrix can do distribute processing by many node of hadoop cluster, and it needs many computation scale but can reduce computation scale by distribute processing. This paper has simplified distribute processing of co-occurrence matrix by changes over from four stage to three stage. As a result, this paper can reduce mapreduce job and can generate recommend file. And it has a fast processing speed, and reduce map output data.

Design of Distributed Hadoop Full Stack Platform for Big Data Collection and Processing (빅데이터 수집 처리를 위한 분산 하둡 풀스택 플랫폼의 설계)

  • Lee, Myeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.45-51
    • /
    • 2021
  • In accordance with the rapid non-face-to-face environment and mobile first strategy, the explosive increase and creation of many structured/unstructured data every year demands new decision making and services using big data in all fields. However, there have been few reference cases of using the Hadoop Ecosystem, which uses the rapidly increasing big data every year to collect and load big data into a standard platform that can be applied in a practical environment, and then store and process well-established big data in a relational database. Therefore, in this study, after collecting unstructured data searched by keywords from social network services based on Hadoop 2.0 through three virtual machine servers in the Spring Framework environment, the collected unstructured data is loaded into Hadoop Distributed File System and HBase based on the loaded unstructured data, it was designed and implemented to store standardized big data in a relational database using a morpheme analyzer. In the future, research on clustering and classification and analysis using machine learning using Hive or Mahout for deep data analysis should be continued.