• Title/Summary/Keyword: Magnitude Ratio

Search Result 853, Processing Time 0.024 seconds

Effect of Non-lattice Oxygen Concentration on Non-linear Interfacial Resistive Switching Characteristic in Ultra-thin HfO2 Films

  • Kim, Yeong-Jae;Kim, Jong-Gi;Mok, In-Su;Lee, Gyu-Min;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.359-360
    • /
    • 2013
  • The effect of electrode and deposition methods on non-linear interfacial resistive switching in HfO2 based $250{\times}250$ nm2 cross-point device was studied. HfO2 based device has the interfacial resistive switching properties of non-linearity and self-compliance current switching. The operating current in HfO2 based device was increased with negatively increasing the heat of formation energy in top electrode. Also, it was investigated that the operating current in HfO2 based device was changed with deposition methods of O3 reactant ALD, H2O reactant ALD and dc reactive sputtering, resulting the magnitude of the operating current and on/off ratio in order of HfO2 films deposited by dc reactive sputtering, H2O reactant ALD, and O3 reactant ALD. To investigate the effect of electrode and deposition methods on operating current of non-linear interfacial resistive switching in the cross-point device, X-ray photoelectron spectroscopy was measured. Through the analysis of O 1s spectra, non-lattice oxygen concentration, which is closely related to oxygen vacancies, was increased in order of Pt, TiN, and Ti top electrodes and in order of O3 reactant ALD, H2O reactant ALD, and O3 reactant ALD, and dc reactive sputtering deposition method. From all results, non-lattice oxygen concentration in ultra-thin HfO2 films play a crucial role in the operating current and memory states (LRS & HRS) in the non-linear interfacial resistive switching.

  • PDF

The Effect of n-Alkanols on the Lateral Diffusion of Synaptosomal Plasma Membrane Vesicles Isolated from Bovine Cerebral Cortex (n-Alkanols가 소의 대뇌피질로부터 분리한 Synaptosomal Plasma Membrane Vesicles의 측방확산운동 범위와 속도에 미치는 영향)

  • Chung, In-Kyo;Kang, Jung-Sook;Yun, Il
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.157-163
    • /
    • 1993
  • Intramolecular excimer formation with the fluorescent probe 1,3-di(1-pyrenyl)propane (Py-3-Py) was used to investigate the effects of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol and 1-decanol on the lateral diffusion of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex (SPMV). The n-alkanols increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMV. In a dose-dependent manner, n-alkanols increased lateral diffusion of hydrocarbon region of bulk (inner+outer monolayers) SPMV lipid bilayers, and the potencies of n-alkanols up to l-nonanol increased with carbon chain length. It appears that the potencies in bilayer fluidization due to the lateral diffusion increase by 1 order of magnitude as the carbon chain length increases by two carbon atoms. The cut-off phenomenon was reached at 1-decanol, where further increase in hydrocarbon length resulted in a decrease in pharmacological activity.

  • PDF

Pharmacokinetics of Two Cyclosporine Formulations Using FPIA and HPLC Assay in Volunterrs

  • Kwon, Kwang-Il;Kim, Moo-Heon;Park, Jong-Woo;Lee, Chang-Hyun
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.385-390
    • /
    • 1995
  • The analytical methods for the analysis of cyclosporine (CsA), a fluorescence polarization immunoassay (FPIA) and HPLC method, were compared in a pharmacokinetic study of two CsA soft capsule formultaions ($Sandimmun^{\circledR}$; Sandoz, $Implanta^{\circledR}$; Hanmi). Sixteen healthy volunteers completed the study and each subjected single doses ($4{\tiems}100$ mg) of the test and the reference formulations in a two-way crossover design with a one-week drug-free interval between doses. Following each administration, whole blood concentrations of CsA were monitored over a period of 24 hour by both FPIA and HPLC methods. Blood concentrations nad pharmacokinetic parameters determined by either analytical method showed large intersubject variation, with the FPIA data showing relatively higher magnitude of intersubjecte variation than the HPLC data. The blood concentrations determined by FPIA were 1.1-1.3 times higher than those determined by HPLC. There were strong and significant correlations between the two methods (r>0.83 : p<0.0001). Intersubuject variation for the $AUC_{inf}{\;}and{\;}AUC_{24hr}$ of the test formulation was slightly reduced without statistical significance (paried -t test : p>0.05 $t_{max}$ was earlier nad $C_{max}$ was slightly lower for the test formulation, $AUC_{24h}, {\;}C_{max}, {\;}T_{max}$ and MRT determined separately from the data obtained by the two methods for the two formulations were examined by analyses of variance (ANOVA) for the bioequivalency evaluation. Results of ANOVA and confidence limits of terst/reference ratios of $AUC_{24th}$, $C_{max}$, $t_{max}$ and MRT, and statistical tests indicated the bioequivalence of the two formulations (i.e., test/reference ratio was within $100{\times}20%$) except for $C_{max}$ and $t_{max}$. The mean of tmax also showed 11.1% and 9.3% differences but the detection limit were 29.2% and 29.6% as determined by FPIA and HPLC resepctively. This experiments suggest that the data yielded for the two formulations demonstrated that they were bioequivalent.

  • PDF

A Camera Based Traffic Signal Generating Algorithm for Safety Entrance of the Vehicle into the Joining Road (차량의 안전한 합류도로 진입을 위한 단일 카메라 기반 교통신호 발생 알고리즘)

  • Jeong Jun-Ik;Rho Do-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.66-73
    • /
    • 2006
  • Safety is the most important for all traffic management and control technology. This paper focuses on developing a flexible, reliable and real-time processing algorithm which is able to generate signal for the entering vehicle at the joining road through a camera and image processing technique. The images obtained from the camera located beside and upon the road can be used for traffic surveillance, the vehicle's travel speed measurement, predicted arriving time in joining area between main road and joining road. And the proposed algorithm displays the confluence safety signal with red, blue and yellow color sign. The three methods are used to detect the vehicle which is driving in setted detecting area. The first method is the gray scale normalized correlation algorithm, and the second is the edge magnitude ratio changing algorithm, and the third is the average intensity changing algorithm The real-time prototype confluence safety signal generation algorithm is implemented on stored digital image sequences of real traffic state and a program with good experimental results.

Biotic and spatial factors potentially explain the susceptibility of forests to direct hurricane damage

  • Kim, Daehyun;Millington, Andrew C.;Lafon, Charles W.
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.364-375
    • /
    • 2019
  • Background: Ecologists continue to investigate the factors that potentially affect the pattern and magnitude of tree damage during catastrophic windstorms in forests. However, there still is a paucity of research on which trees are more vulnerable to direct damage by winds rather than being knocked down by the fall of another tree. We evaluated this question in a mixed hardwood-softwood forest within the Big Thicket National Preserve (BTNP) of southeast Texas, USA, which was substantially impacted by Hurricane Rita in September 2005. Results: We showed that multiple factors, including tree height, shade-tolerance, height-to-diameter ratio, and neighborhood density (i.e., pre-Rita stem distribution) significantly explained the susceptibility of trees to direct storm damage. We also found that no single factor had pervasive importance over the others and, instead, that all factors were tightly intertwined in a complex way, such that they often complemented each other, and that they contributed simultaneously to the overall susceptibility to and patterns of windstorm damage in the BTNP. Conclusions: Directly damaged trees greatly influence the forest by causing secondary damage to other trees. We propose that directly and indirectly damaged (or susceptible) trees should be considered separately when assessing or predicting the impact of windstorms on a forest ecosystem; to better predict the pathways of community structure reorganization and guide forest management and conservation practices. Forest managers are recommended to adopt a holistic view that considers and combines various components of the forest ecosystem when establishing strategies for mitigating the impact of catastrophic winds.

Characteristics of Undrained Cyclic Shear Behavior for the Nak-dong River Sand Due to the Aging Effect (Aging 효과에 따른 낙동강 모래의 비배수 반복전단거동 특성)

  • Kim Dae-Man;Kim Young-Su;Jung Sung-Gwan;Seo In-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.13-26
    • /
    • 2005
  • It was known that the aging effect of sands is insignificant in comparison with clays, and hence the study on this effect had seldom been performed prior to the early 1980s. However, field tests for this effect have been actively carried out since it was investigated that penetration resistance of reformed sands increased with the lapse of time. Recently, the aging effect of sands has also been examined in laboratory testings. In this study, undrained static triaxial tests were performed to evaluate the effect on the Nak-dong River sands, with different .elative densities $(D_r)$, consolidation stress ratios $(K_c)$, and consolidation times. As a result of the tests, it was proved that the undrained cyclic shear strength $(R_f)$ increased with the aged time on the sands. The in situ range of Rf on the sands, which is applicable to the magnitude of earthquake in the Nak-dong River area, was proposed by using the test results.

Slope Failure Surface Using Finite Element Method

  • Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.27-40
    • /
    • 1999
  • In limit equilibrium methods(LEM), all methods employ the same definition of the safety factor as a ratio of the shear strength of the soil to the shear stress required for equilibrium, employing certain assumptions with regard to equilibrium. In addition, in the conventional finite element method of analysis, the minimum safety factor is obtained assuming certain slip surfaces after the state of stress are found. Although the stress states are obtained from the finite element method(FEM), the slope stability analysis follows the conventional method that assumes a potential slip surface. In this study, a slope stability analysis based on FEM is developed to locate the slip surface by tracking the weakest points in the slope based on the local safety factor considering the magnitude and direction of the shear stresses. It has also been applied to be compared with the slip surfaces predicted by LEM. A computer program has been developed to draw contour lines of the local safety factors automatically. This method is illustrated through a simple hypothetical slope, a natural soil slope, and a dam slope. The developed method matches very well with the conventional LEM methods, with slightly lower global safety factors.

  • PDF

Photodissolution, photodiffusion characteristics and holographic grating formation on Ag-doped $As_{40}Ge_{10}Se_{15}S_{35}$ chalcogenide thin film (Ag가 도핑된 칼코게나이드 $As_{40}Ge_{10}Se_{15}S_{35}$ 박막의 광분해, 광확산특성 및 홀로그래픽 격자형성)

  • Chung, Hong-Bay
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.10
    • /
    • pp.461-466
    • /
    • 2006
  • In the present work, we investigated the photodissolution and photodiffusion effect on the interface of Ag/chalcogenide $As_{40}Ge_{10}Se_{15}S_{35}$ thin film by measuring the absorption coefficient, the optical density, the resistance change of Ag layer. It was found that the photodissolutioniphotodiffution ratio depends on the magnitude of photon energy absorbed in the chalcogenide thin film and the depth of photodiffution was proportional to the square root of the exposed time. Also, we have investigated the holographic grating formation with P-polarization states on chalcogenide $As_{40}Ge_{10}Se_{15}S_{35}$ thin film and $As_{40}Ge_{10}Se_{15}S_{35}/Ag$ double layer structure thin film. Holographic gratings have been formed using He-Ne laser (632.8 nm) which have a smaller energy than the optical energy gap, $E_g\;_{opt}$ of the film, i. e., an exposure of sub-bandgap light $(h{\upsilon} under P-polarization. As the results, we found that the diffraction efficiency on $As_{40}Ge_{10}Se_{15}S_{35}/Ag$ double layer structure thin film was more higher than that on single $As_{40}Ge_{10}Se_{15}S_{35}$ thin film. Also, we obtained that the maximum diffraction efficiency was 0.27 %, 1,000 sec on $As_{40}Ge_{10}Se_{15}S_{35}\;(1{\mu}m)/Ag$ (10 nm) double layer structure thin film by (P: P) polarized recording beam. It will offer lots of information for the photodoping mechanism and the analyses of chalcogenide thin films.

Assessment of vertical wind loads on lattice framework with application to thunderstorm winds

  • Mara, T.G.;Galsworthy, J.K.;Savory, E.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.413-431
    • /
    • 2010
  • The focus of this article is on the assessment of vertical wind vector components and their aerodynamic impact on lattice framework, specifically two distinct sections of a guyed transmission tower. Thunderstorm winds, notably very localized events such as convective downdrafts (including downbursts) and tornadoes, result in a different load on a tower's structural system in terms of magnitude and spatial distribution when compared to horizontal synoptic winds. Findings of previous model-scale experiments are outlined and their results considered for the development of a testing rig that allows for rotation about multiple body axes through a series of wind tunnel tests. Experimental results for the wind loads on two unique experimental models are presented and the difference in behaviour discussed. For a model cross arm with a solidity ratio of approximately 30%, the drag load was increased by 14% when at a pitch angle of $20^{\circ}$. Although the effects of rotation about the vertical body axis, or the traditional 'angle of attack', are recognized by design codes as being significant, provisions for vertical winds are absent from each set of wind loading specifications examined. The inclusion of a factor to relate winds with a vertical component to the horizontal speed is evaluated as a vertical wind factor applicable to load calculations. Member complexity and asymmetric geometry often complicate the use of lattice wind loading provisions, which is a challenge that extends to future studies and codification. Nevertheless, the present work is intended to establish a basis for such studies.

Interaction and mechanical effect of materials interface of contact zone composite samples: Uniaxial compression experimental and numerical studies

  • Wang, Weiqi;Ye, Yicheng;Wang, Qihu;Luo, Binyu;Wang, Jie;Liu, Yang
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.571-582
    • /
    • 2020
  • Aiming at the mechanical and structural characteristics of the contact zone composite rock, the uniaxial compression tests and numerical studies were carried out. The interaction forms and formation mechanisms at the contact interfaces of different materials were analyzed to reveal the effect of interaction on the mechanical behavior of composite samples. The research demonstrated that there are three types of interactions between the two materials at the contact interface: constraint parallel to the interface, squeezing perpendicular to the interface, and shear stress on the interface. The interaction is mainly affected by the differences in Poisson's ratio and elastic modulus of the two materials, stronger interface adhesion, and larger interface inclination. The interaction weakens the strength and stiffness of the composite sample, and the magnitude of weakening is positively correlated with the degree of difference in the mechanical properties of the materials. The tensile-shear stress derived from the interaction results in the axial tensile fracture perpendicular to the interface and the interfacial shear facture. Tensile cracks in stronger material will propagation into the weaker material through the bonded interface. The larger inclination angle of the interface enhances the effect of composite tensile/shear failure on the overall sample.