• Title/Summary/Keyword: Magnitude

Search Result 7,978, Processing Time 0.036 seconds

Duration Magnitude and Local-Duration Magnitude Relations for Earth-quakes of 1979-1998 Recorded at KMA Network (한반도 지진의 지속규모식에 관한 연구)

  • 박삼근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.421-435
    • /
    • 1998
  • An empirical formula for estimating duration magnitude(MD)is determined by analyzing 619 epicentral distance-duration data set, obtained from earthquakes of 1989-1998 recorded at the KMA network. Based on two assumptions: 1) observed signal duration decreases with increasing epicentral distance, and 2) seismographs of KMA are set at low-gain and therefore inclusion of sensitivity correction term in the equation is not necessary, scaling predicted duration at epicenter to Tsuboi's local magnitude yielded the duration magnitude equation: MD =2.0292$\times$log$\tau$+0.00123Δ-1.4017 for 1/0$\leq$ML$\leq$5.0, where $\tau$is total signal duration(sec)and Δis epicentral distance(km). Event by event comparison of ML values against MD estimates for t152 events shows that for events having a same ML the difference in MD estimates reaches as high as 1.1 magnitude units. So, to test the usefulness of the duration magnitude equation, we have calculated ML-MD relations by which duration magnitude estimates are converted to local magnitudes ("predicted" ML, say) which are then compared with the directly determined local magnitude values. Except for events with stations where duration is anomalously reestimates(predicted ML) which are in an agreement within a 0.2 magnitude units with the corresponding ML values. Although this study could gain some insights into magnitudes of the past events, we still need to re-examine all the observables in order to obtain more reliable and precise information about magnitude and hypocenter location. So we will pursue a new local-magnitude scaling, as well as refinement of the duration magnitude equation, starting soon with re-reading the amplitudes-arrival time records of (and hence relocating) 250+earthquakes of 1979-present recorded at the KMA network. Thus, with more reliable and precise earthquake parameters determined we would better understand the recent seismicity and related tectonic process within and adjacent region to the Korean peninsula.peninsula.

  • PDF

An Investigation Into 3-, 4-, and 5-Year-Old Children's Nonsymbolic Magnitude Comparison Ability According to Ratio Limit and Task Condition (비율제한 및 과제제시방법에 따른 3, 4, 5세 유아의 비상징 수 비교능력)

  • Cho, Woomi;Yi, Soon-Hyung
    • Korean Journal of Child Studies
    • /
    • v.38 no.1
    • /
    • pp.117-126
    • /
    • 2017
  • Objective: The purpose of this study was to investigate young children's nonsymbolic magnitude comparison ability according to ratio limit and task condition. Methods: The participants included 40 3-year-old children, 42 4-year-old children, and 41 5-year-old children recruited from 4 childcare centers located in Seoul, Korea. All magnitude comparison tasks were composed of image material tasks and concrete material tasks. In addition, each magnitude comparison task varied with the ratio of the two quantities; 0.5 ratio, 0.67 ratio, 0.75 ratio. Results and Conclusion: The results revealed that 3-, 4-, and 5-year-old children could perform nonsymbolic magnitude comparison tasks without learning experiences. Also, 3-, 4-, and 5-year-old children could perform concrete material tasks better than image material tasks in nonsymbolic magnitude comparison tasks. Furthermore, children's performance on nonsymbolic magnitude comparison tasks indicated the ratio signature of the approximate number system. Children have a degree of numerical capacity prior to formal mathematics instruction. Also, children were influenced by task conditions or sense stimulus when they processed numerical information. Furthermore, the approximate number system can be used in understanding the ordinality of number.

Earthquakes occurred around the Yeongweol area (영월 및 인접 지역에서 발생한 지진에 대한 고찰)

  • 추교승
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.94-97
    • /
    • 1997
  • The December 13, 1996 Yeongweol earthquake of magnitude 4.5 was felt almost everywhere in southern part of the Korean Peninsula and Cheju Island, even though not feld in Tsushima Island at other places in Japan near to Korea. Production lines of semiconductor disk in electronic engineering companies of Gumi manufacturing complex were seriously affected by the shake of this earthquake. Total 17 earthquakes of magnitude 4 or above occurred within the area of 50km radius from Yeongweol in the period from the year 1400 to 1996. This group of earthquakes includes 12 events of magnitude 5.0 or above and 3 events of magnitude 6.0 or above. Among these events, 13 earthquakes are historical events of years 1400-1904. Most of them occurred in 15-16 centuries. The February 21, 1596 Jungseon-Pyeongchang event of magnitude 6.5 is the largest one up to now in the area. There are four instrumental earthquakes (years 1905-1996) of magnitude 4.0 or above in this area. An earthquake of magnitude 4.4 occurred on 5th of November, 1919 at almost the same place as the December 13, 1996 earthquake of magnitude 4.5. Thus this event is preceded with the previous one by 77 years.

  • PDF

Video Watermarking Based on Wavelet Magnitude Modulus Subband

  • Byun, Jin-Kyung;Moon, Young-Deuk;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.737-744
    • /
    • 2007
  • This paper proposes the blind watermarking algorithm for digital video based on magnitude modulus subband in wavelet transform domain. After transforming each of frames into wavelet domain, the proposed algorithm divides LH, HL, and HH subbands of 2-level into $3{\times}3$ blocks and calculates average magnitude modulus of all blocks. Then the watermark bit is embedded into a target magnitude modulus comparing with an average magnitude modulus within a block. Experimental results were confirmed that the proposed algorithm has the good robustness against MPEG and frame attacks than the conventional algorithm.

  • PDF

Low Complexity Gradient Magnitude Calculator Hardware Architecture Using Characteristic Analysis of Projection Vector and Hardware Resource Sharing (정사영 벡터의 특징 분석 및 하드웨어 자원 공유기법을 이용한 저면적 Gradient Magnitude 연산 하드웨어 구현)

  • Kim, WooSuk;Lee, Juseong;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.414-418
    • /
    • 2016
  • In this paper, a hardware architecture of low area gradient magnitude calculator is proposed. For the hardware complexity reduction, the characteristic of orthogonal projection vector and hardware resource sharing technique are applied. The proposed hardware architecture can be implemented without degradation of the gradient magnitude data quality since the proposed hardware is implemented with original algorithm. The FPGA implementation result shows the 15% of logic elements and 38% embedded multiplier savings compared with previous work using Altera Cyclone VI (EP4CE115F29C7N) FPGA and Quartus II v15.0 environment.

Real-time Estimation of the Earthquake Magnitude Using the Bracketed Cumulative and Peak Parameters of the Ground-motion Acceleration of a Single Station (단일 지진관측소의 지반가속도 구간 누적값 및 최대값 파라미터를 이용한 실시간 지진규모 추정 연구)

  • Yun, Kwan Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • In industrial facilities sites, the conventional method determining the earthquake magnitude (M) using earthquake ground-motion records is generally not applicable due to the poor quality of data. Therefore, a new methodology is proposed for determining the earthquake magnitude in real-time based on the amplitude measures of the ground-motion acceleration mostly from S-wave packets with the higher signal-to-ratios, given the Vs30 of the site. The amplitude measures include the bracketed cumulative parameters and peak ground acceleration (As). The cumulative parameter is either CAV (Cumulative Absolute Velocity) with 100 SPS (sampling per second) or BSPGA (Bracketed Summation of the PGAs) with 1 SPS. The arithmetic equations to determine the earthquake magnitude are derived from the CAV(BSPGA)-As-M relations. For the application to broad ranges of earthquake magnitude and distance, the multiple relations of CAV(BSPGA)-As-M are derived based on worldwide earthquake records and successfully used to determine the earthquake magnitude with a standard deviation of ${\pm}0.6M$.

A Study on the Evaluation of Sensation Magnitude of Vertical Vibration of a Steering Wheel (조향 휠 수직 진동의 체감량 평가에 관한 연구)

  • Jang, Han-Kee;Hong, Seok-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.108-113
    • /
    • 2007
  • This study aims to find equivalent comfort contours, reciprocal of frequency weighting curves, for vertical steering wheel vibration. Psychophysical responses were measured from twelve male subjects by using magnitude estimation of relative discomfort due to vertical steering wheel vibrations of magnitude of 0.1 to 1.58 $m/s^2$ in the frequency range of 4 to 250 Hz. Relative discomfort were estimated with a reference vibration of 0.4 $m/s^2$ at 31.5 Hz. Equivalent comfort contours were produced from the median of sensation magnitudes judged by twelve subjects, which showed variation in the shapes with increase of vibration magnitude. A shape of the contour came close to the perception threshold curve with decrease of vibration magnitude. When the vibration magnitude increases, the shape changed close to those in the references of Hong and et al (2003). It is also recommended frequency weighting curves for vertical steering wheel vibration must be expressed as a function of vibration magnitude as well as frequency.

Damping modification factor of pseudo-acceleration spectrum considering influences of magnitude, distance and site conditions

  • Haizhong Zhang;Jia Deng;Yan-Gang Zhao
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.325-342
    • /
    • 2023
  • The damping modification factor (DMF) is used to modify the 5%-damped response spectrum to produce spectral values that correspond to other necessary damping ratios for seismic design. The DMF has been the subject of numerous studies, and it has been discovered that seismological parameters like magnitude and distance can have an impact on it. However, DMF formulations incorporating these seismological parameters cannot be directly applied to seismic design because these parameters are not specified in the present seismic codes. The goal of this study is to develop a formulation for the DMF that can be directly applied in seismic design and that takes the effects of magnitude, distance, and site conditions into account. To achieve this goal, 16660 ground motions with magnitudes ranging from 4 to 9 and epicentral distances ranging from 10 to 200 km are used to systematically study the effects of magnitude, distance, and site conditions on the DMF. Furthermore, according to the knowledge that magnitude and distance affect the DMF primarily by changing the spectral shape, a spectral shape factor is adopted to reflect influences of magnitude and distance, and a new formulation for the DMF incorporating the spectral shape factor is developed. In comparison to the current formulations, the proposed formulation provides a more accurate prediction of the DMF and can be employed directly in seismic design.

A study for magnitude estimation data analysis procedure (Magnitude Estimation 데이터 분석 절차에 관한 연구)

  • 송맹기;한성호;곽지영
    • Proceedings of the ESK Conference
    • /
    • 1995.10a
    • /
    • pp.13-17
    • /
    • 1995
  • A Psychophysical scaling method called magnitude estimation is frequently used to evaluate human sensation to physical stimuli. This paper described the procedure of magnitude estimation data analysis which consists of four modulus; reponse space, CMM(Cross-Modality Matdhing)/merge, standardization, scale building & data analysis method. This procedure is being developed as an expert system in which the four analysis modulus are programmed so that a novice user can perform the analysis.

  • PDF

Seismic Moment Conversion of instrumented Earthquakes in and around the Korean Peninsula (Ⅰ):from$m_b$or$m_s$to$m_0$ (한반도 및 인근 지역 계기지진의 지진모멘트 환산(Ⅰ):$m_b$또는 $m_s$에서$m_0$)

  • No, Myeong-Hyeon;Lee, Sang-Guk;Choe, Gang-Ryong
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.47-55
    • /
    • 2001
  • conversion equations to calculate seismic moment(M_0) from body-wave magnitude(m_b), surface-wave magnitude(M_s), or both were derived by using 50 earthquakes occurred within 32~44°N and 123~133°E whose M_0 were determined together with m_b or M_s. We divided those earthquakes into the deeper and the shallower ones based on the reference focal depth of 70 km. The unit of M_0 is dyne-cm. In case of M_s, the deeper earthquakes exhibit the higher seismic moment than the shallower ones. Standard deviations associated with conversion equations for deeper and shallower earthquakes are 0.25 and 0.16, respectively, in moment magnitude. , for deeper earthquakes , for shallower earthquakes. In case of m_b, the dependence of conversion equation on focal depth is not clearly observed. Associated standard deviation is 0.28 in moment magnitude. In case that both m_b and M_s were determined, a new magnitude, , were defined for shallower earthquakes to derive a more stable conversion equation. Associated standard deviation is 0.14 in moment magnitude. Conversion equations above can be used to unify the earthquake size into a single magnitude type, i.e., moment magnitude, in and around the Korea Peninsula.

  • PDF