• Title/Summary/Keyword: Magnetron Sputtering

Search Result 2,876, Processing Time 0.03 seconds

Characteristics of the Angular-dependent Exchange Coupling Bias in Multilayer [Pt/Co]N-IrMn with Toward-in Plane Applied Fields (박막수직방향에서 면방향으로 회전하는 인가자기장에 대한 다층박막 [Pt/Co]N-IrMn의 교환바이어스의 각도의존특성)

  • Kim, S.S.;Yim, H.I.;Rhee, J.R.;Lee, S.S.;Hwang, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.142-146
    • /
    • 2008
  • The angular dependence of the exchange bias($H_{ex}$) and coercivity($H_c$) in multilayer $[Pt/Co]_N-IrMn$ with applied measuring field rotated toward in-plane at angle $\theta$ from perpendicular-to-plane, has been measured. Multilayer films consisting of $Si/SiO_2/Ta(50)/Pt(4)/[Pt(15)/Co(t_{Co})]_N/IrMn(50)/Ta(50)(in\;{\AA})$ were prepared by magnetron sputtering under typical base pressure below $2{\times}10^{-8}$ Torr at room temperature. Magnetization measurements were performed on a vibrating sample magnetometer and extraordinary Hall voltage measurement systems after cooling from 550 K under a field of 2 kOe applied along the perpendicular to film direction. The hysteresis loop shifts from the origin not only along the field axis but also along the magnetization axis. $H_{ex}$ and $H_c$ show a $1/cos{\theta}$ and $1/|cos{\theta}|$ dependence on the angle($\theta$) between the applied measuring field and the perpendicular-film direction, respectively. This $1/cos{\theta}$ dependence can be accounted for by considering the angular dependence of strong out-of-plane magnetic anisotropy introduced during the field cooling.

Transport and optical properties of transparent conducting oxide In2O3:Zn (비정질 투명전도막 In2O3:Zn의 전기적 광학적 특성)

  • 노경헌;최문구;박승한;주홍렬;정창오;정규하;박장우
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.455-459
    • /
    • 2002
  • The transport and optical properties of $In_2O_3$:Zn(IZO) thin films grown by DC magnetron sputtering deposition have been studied. The deposition temperatures ($T_s$) were varied from room temperature to $400^{\circ}C$ in $50^{\circ}C$ steps. The IZO films are an amorphous phase for $T_s$<$300^{\circ}C$ and polycrystalline phase for $350^{\circ}C$$T_s$. In contrast to ordinary films, amorphous IZO films have lower resistivity and higher optical transmittance than polycrystalline IZO films. The resistivity of amorphous IZO was in the range of 0.29~0.4 m$\Omega$cm and that of polycrystalline IZO was in the range of 1~4 m$\Omega$cm. The carrier type for IZO film was found to be n-type, and the carrier density, was $3~5{\times}10^{20}/cm^3$. The Hall mobility, $({\mu}_H)$, was 20~$50\textrm{cm}^2$/V.sec. The predominant scattering mechanisms in both amorphous and polycrystalline IZO films were believed to be ionized impurity scattering and lattice scattering. The visible transmittance of the IZO films, which decreases with an increase of TS, was above 80%.

Effect of RTA Temperature on the Structural and Optical Properties of HfO2 Thin Films (급속 열처리 온도가 HfO2 박막의 구조적 및 광학적 특성에 미치는 효과)

  • Chung, Yeun-Gun;Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.497-504
    • /
    • 2019
  • We fabricated $HfO_2$ thin films using RF magnetron sputtering method, and investigated structural and optical properties of $HfO_2$ thin films with RTA temperatures in $N_2$ ambient. $HfO_2$ thin films exhibited polycrystalline structure regardless of annealing process, FWHM of M (-111) showed reduction trend. The surface roughness showed the smallest of 3.454 nm at a annealing temperature of $600^{\circ}C$ in result of AFM. All $HfO_2$ thin films showed the transmittance of about 80% in visible light range. By fitting the refractive index from the transmittance and reflectance to the Sellmeir dispersion relation, we can predict the refractive index of the $HfO_2$ thin film according to the wavelength. The $HfO_2$ thin film annealed at $600^{\circ}C$ exhibited a high refractive index of 2.0223 (${\lambda}=632nm$) and an excellent packing factor of 0.963.

Influence of the DC Power on the Electrical and Optical Properties of ITO Thin Films Deposited on Nb2O5/SiO2 Buffer Layer (Nb2O5/SiO2 버퍼층위에 증착한 ITO 박막의 전기적 및 광학적 특성에 DC 파워가 미치는 영향)

  • Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.297-302
    • /
    • 2019
  • In this study, we deposited ITO thin films on buffer layer of $Nb_2O_5(8nm)/SiO_2(45nm)$ using DC magnetron sputtering method and investigated its electrical and optical properties with various DC powers(100~400 W). The surface of the ITO thin film was observed by AFM. All thin films had defected free surface such as pinholes and cracks. The thin film deposited at DC power of 200 W exhibited the smallest surface roughness of 1.431nm. As a result of electrical and optical measurements, the ITO thin film deposited at DC power of 200 W which showed the lowest resistivity of $3.03{\times}10^{-4}{\Omega}-cm$. The average transmittance in the visible light region(400 to 800 nm) and the transmittance at the wavelength of 550nm were found to be 85.8% and 87.1%, respectively. The chromaticity(b*) was also a relatively good value as 2.13. The figure of merit obtained from the sheet resistance of the ITO thin film, the average transmittance in the visible light region and the transmittance at the wavelength of 550nm were the best values of $2.50{\times}10^{-3}{\Omega}^{-1}$ and $2.90{\times}10^{-3}{\Omega}^{-1}$ at a DC power of 200W, respectively.

Effect of composition on the structural and thermal properties of TiZrN thin film (TiZrN 박막의 조성이 구조적 특성 및 열적 특성에 미치는 영향)

  • Choi, Byoung Su;Um, Ji Hun;Seok, Min Jun;Lee, Byeong Woo;Kim, Jin Kon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 2021
  • The effect of chemical composition on the structural and thermal properties of TiZrN thin films was studied. As the Zr fraction in the deposited TixZr1-xN (x = 0.87, 0.82, 0.7, 0.6, and 0.28) increased, microstructural changes consisted of reduction in the grain size and a gradual transition from columnar structure to granular structure were observed. In addition, it was also confirmed that a gradual crystal phase transition from TiN to TiZrN has occurred as the Zr fraction increased up to 0.4. After heat treatment at 900℃, Ti0.82Zr0.18N and Ti0.7Zr0.3N layers were converted to a form in which rutile phase TiO2 and TiZrO4 oxides coexist, while Ti0.6Zr0.4N layer was converted to TiZrO4 oxide. Among the five compositions of TiZrN films, the Ti0.6Zr0.4N showed the best high temperature stability and produced a significant enhancement in the thermal oxidation resistance of Inconel 617 through suppressing the surface diffusion of Cr caused by thermal oxidation of the Inconel 617 substrate.

Corrosion Behaviors of TiN Coated Dental Casting Alloys (TiN피막 코팅된 치과주조용 합금의 부식거동)

  • Jo, Ho-Hyeong;Park, Geun-Hyeng;Kim, Won-Gi;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.129-137
    • /
    • 2009
  • Corrosion behaviors of TiN coated dental casting alloys have been researched by using various electrochemical methods. Three casting alloys (Alloy 1: 63Co-27Cr-5.5Mo, Alloy 2: 63Ni-16Cr-5Mo, Alloy 3: 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting(CF), high frequency induction casting(HFI) and vacuum pressure casting(VP). The specimens were coated with TiN film by RF-magnetron sputtering method. The corrosion behaviors were investigated using potentiostat (EG&G Co, 263A. USA) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion morphologies were analyzed using FE-SEM and EDX. Alloy 1 and Alloy 2 showed the ${\alpha}-Co$ and ${\varepsilon}-Co$ phase on the matrix, and it was disappeared in case of TiN coated Alloy 1 and 2. In the Alloy 3, $Ni_2Cr$ second phases were appeared at matrix. Corrosion potentials of TiN coated alloy were higher than that of non-coated alloy, but current density at passive region of TiN coated alloy was lower than that of non-coated alloy. Pitting corrosion resistances were increased in the order of centrifugal casting, high frequency induction casting and vacuum pressure casting method from cyclic potentiodynamic polarization test.

Influence of the RF Power on the Optical and Electrical Properties of ITZO Thin Films Deposited on SiO2/PES Substrate (RF파워가 SiO2/PES 기판위에 증착한 ITZO 박막의 광학적 및 전기적 특성에 미치는 효과)

  • Choi, Byeong-Kyun;Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.443-450
    • /
    • 2021
  • After selecting a PES substrate with excellent thermal stability and optical properties among plastic substrates, a SiO2 thin film was deposited as a buffer layer to a thickness of 20nm by plasma-enhanced chemical vapor deposition to compensate for the high moisture absorption. Then, the ITZO thin film was deposited by a RF magnetron sputtering method to investigate electrical and optical properties according to RF power. The ITZO thin film deposited at 50W showed the best electrical properties such as a resistivity of 8.02×10-4 Ω-cm and a sheet resistance of 50.13Ω/sq.. The average transmittance of the ITZO thin film in the visible light region(400-800nm) was relatively high as 80% or more when the RF power was 40 and 50W. Figure of Merits (ΦTC and FOM) showed the largest values of 23.90×10-4-1 and 5883 Ω-1cm-1, respectively, in the ITZO thin film deposited at 50W.

Characteristics of ITZO Thin Films According to Substrate Types for Thin Film Solar Cells (박막형 태양전지 응용을 위한 ITZO 박막의 기판 종류에 따른 특성 분석)

  • Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1095-1100
    • /
    • 2021
  • In this study, ITZO thin films were deposited on glass, sapphire, and PEN substrates by RF magnetron sputtering, and their electrical and optical properties were investigated. The resistivity of the ITZO thin film deposited on the glass and sapphire substrates was 3.08×10-4 and 3.21×10-4 Ω-cm, respectively, showing no significant difference, whereas the resistivity of the ITZO thin film deposited on the PEN substrate was 7.36×10-4 Ω-cm, which was a rather large value. Regardless of the type of substrate, there was no significant difference in the average transmittance of the ITZO thin film. Figure of Merits of the ITZO thin film deposited on the glass substrate obtained using the average transmittance in the absorption region of the amorphous silicon thin film solar cell and the absorption region of the P3HT : PCBM organic active layer were 10.52 and 9.28×10-3 Ω-1, respectively, which showed the best values. Through XRD and AFM measurements, it was confirmed that all ITZO thin films exhibited an amorphous structure and had no defects such as pinholes or cracks, regardless of the substrate type.

A Study of Electro-Optical Properties of Polyester Acrylate-Based Polymer-Dispersed Liquid Crystals Using TIZO/Ag/TIZO Multilayer Transparent Electrodes (TIZO/Ag/TIZO 다층막 투명전극을 이용한 폴리에스터 아크릴레이트 기반 고분자분산액정의 전기광학적 특성 연구)

  • Cho, Jung-Dae;Heo, Gi-Seok;Hong, Jin-Who
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Ti-In-Zn-O (TIZO)/Ag/TIZO multilayer transparent electrodes were prepared on glass substrates at room temperature using RF/DC magnetron sputtering. Obtained multilayer structure comprising TIZO/Ag/TIZO (10 nm/10 nm/40 nm) with the total thickness of 60 nm showed a transmittance of 86.5% at 650 nm and a sheet resistance of 8.1 Ω/□. The multilayer films were expected to be applicable for use in energy-saving smart window based on polymer-dispersed liquid crystal (PDLC) because of their transmittance properties to effectively block infrared rays (heat rays). We investigated the effects of the content ratio of prepolymer, the thickness of the PDLC coating layer, and the ultraviolet (UV) light intensity on electro-optical properties, and the surface morphology of polyester acrylate-based PDLC systems using new TIZO/Ag/TIZO transparent conducting electrodes. A PDLC cell with a thickness of 15 ㎛ PDLC layer photocured at an UV intensity of 1.5 mW/cm2 exhibited good driving voltage, favorable on-state transmittance, and excellent off-haze. The LC droplets formed on the surface of the polymer matrix of the PDLC composite had a size range of 1 to 3 ㎛ capable of efficiently scattering incident light. Also, the PDLC-based smart window manufactured using TIZO/Ag/TIZO multi-layered transparent electrodes in this study exhibited a light brown, which will have an advantage in terms of aesthetics.

Enhancements of Crystallization and Opto-Electrical performance of ZnO/Ti/ZnO Thin Films (ZnO/Ti/ZnO 박막의 결정성 및 전기광학적 완성도 개선 연구)

  • Jin-Kyu Jang;Yu-Sung Kim;Yeon-Hak Lee;Jin-Young Choi;In-Sik Lee;Dae-Wook Kim;Byung-Chul Cha;Young-Min Kong;Daeil Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.147-151
    • /
    • 2023
  • Transparent ZnO (100 nm thick) and ZnO/Ti/ZnO (ZTZ) films were prepared with radio frequency (RF) and direct current (DC) magnetron sputtering on the glass substrate at room temperature. During the ZTZ film deposition, the thickness of the Ti interlayer was varied, such as 6, 9, 12, and 15 nm, while the thickness of ZnO films was kept at 50 nm to investigate the effect of the Ti interlayer on the crystallization and opto-electrical performance of the films. From the XRD pattern, it is concluded that the 9 nm thick Ti interlayer showed some characteristic peaks of Ti (200) and (220), and the grain size of the ZnO (002) enlarged from 13.32 to 15.28 nm as Ti interlayer thickness increased. In an opto-electrical performance observation, ZnO single-layer films show a figure of merit of 1.4×10-11 Ω-1, while ZTZ films with a 9 nm-thick Ti interlayer show a higher figure of merit of 2.0×10-5 Ω-1.