• Title/Summary/Keyword: Magnetostrictive sensor

Search Result 49, Processing Time 0.023 seconds

Development of Ultrasonic Magnetostrictive Sensors System to Measure in Very High Temperatures (초고온 온도 측정을 위한 초음파 자왜 센서 시스템 개발)

  • 구길모;김상백;박치승;최종호;고덕영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.66-74
    • /
    • 2001
  • The temperature measurement of yen high temperature core melt is of importance in LAVA (Lower-plenum Arrested Vessel Attack) experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The delay time of ultrasonic wavelets due to high temperature is suggested. As a first stage, a molten material temperature was measured up to 2300℃. Also, the optimization design of the ultrasonic temperature sensor with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in the reference〔1〕and the efficiency of the developed system are certified by performing experiments. This sensor welded magnetostrictive element and tungsten element will be able to measure a temperature range of 3000℃ hereafter.

  • PDF

On magnetostrictive materials and their use in adaptive structures

  • Dapino, Marcelo J.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.303-329
    • /
    • 2004
  • Magnetostrictive materials are routinely employed as actuator and sensor elements in a wide variety of noise and vibration control problems. In infrastructural applications, other technologies such as hydraulic actuation, piezoelectric materials and more recently, magnetorheological fluids, are being favored for actuation and sensing purposes. These technologies have reached a degree of technical maturity and in some cases, cost effectiveness, which justify their broad use in infrastructural applications. Advanced civil structures present new challenges in the areas of condition monitoring and repair, reliability, and high-authority actuation which motivate the need to explore new methods and materials recently developed in the areas of materials science and transducer design. This paper provides an overview of a class of materials that because of the large force, displacement, and energy conversion effciency that it can provide is being considered in a growing number of quasistatic and dynamic applications. Since magnetostriction involves a bidirectional energy exchange between magnetic and elastic states, magnetostrictive materials provide mechanisms both for actuation and sensing. This paper provides an overview of materials, methods and applications with the goal to inspire novel solutions based on magnetostrictive materials for the design and control of advanced infrastructural systems.

A Novel Method for Improving the Positioning Accuracy of a Magnetostrictive Position Sensor Using Temperature Compensation (온도 보상을 이용한 자기변형 위치 센서의 정확도 향상 방법)

  • Yoo, E.J.;Park, Y.W.;Noh, M.D.
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.414-419
    • /
    • 2019
  • An ultrasonic based magnetostrictive position sensor (MPS) provides an indication of real target position. It determines the real target position by multiplying the propagation speed of ultrasonic wave and the time-of-flight between the receiving signals; one is the initial signal by an excitation current and the other is the reflection signal by the ultrasonic wave. The propagation speed of the ultrasonic wave depends on the temperature of the waveguide. Hence, the change of the propagation speed in various environments is a critical factor in terms of the positioning accuracy in the MPS. This means that the influence of the changes in the waveguide temperature needs to be compensated. In this paper, we presents a novel way to improve the positioning accuracy of MPSs using temperature compensation for waveguide. The proposed method used the inherent measurement blind area for the structure of the MPS, which can simultaneously measure the position of the moving target and the temperature of the waveguide without any additional devices. The average positional error was approximately -23.9 mm and -1.9 mm before and after compensation, respectively. It was confirmed that the positioning accuracy was improved by approximately 93%.

Development of Health Monitoring System Using Self Magnetization Magnetostrictive Sensor (자기자화자왜센서를 이용한 설비 off-line Health Monitoring 시스템 개발)

  • Kim, Yi-Gon;Moon, Hong-Sik;Kim, Jun;Kim, Ji-Hyeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.481-486
    • /
    • 2012
  • This thesis examines the development and application of 'Health Monitoring System' which monitors periodically the state of a pipe of petrochemical plant by using magnetostrictive sensor technology. The existing guided-wave inspection methods cannot be applied to welding part inspection in pipe, and has a limit of precision when applied to general parts because of noise, reflected waves, and so on. This technology uses the information on displacement of a defect through periodic monitoring, which makes more precise inspection, and can be utilized very usefully in a petrochemical plant.

Dynamic Magnetic Field Measurement in the Air Gap of Magnetic Bearings Based on FBG-GMM Sensor

  • Jiayi, Liu;Zude, Zhou;Guoping, Ding;Huaqiang, Wang
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.575-585
    • /
    • 2015
  • Magnetic field in magnetic bearings is the physical medium to realize magnetic levitation, the distribution of the magnetic field determines the operating performance of magnetic bearings. In this paper, a thin-slice Fiber Bragg Grating-Giant Magnetostrictive Material magnetic sensor used for the air gap of magnetic bearings was proposed and tested in the condition of dynamic magnetic field. The static property of the sensor was calibrated and a polynomial curve was fitted to describe the performance of the sensor. Measurement of dynamic magnetic field with different frequencies in magnetic bearings was implemented. Comparing with the finite element simulations, the results showed the DC component of the magnetic field was detected by the sensor and error was less than 5.87%.

A Study About Weld Defects Detection By Using A Magnetostrictive Sensor (Magnetostrictive Sensor를 이용한 용접결함 검출에 관한 연구)

  • Na, Hyun-Ho;Kim, Ill-Soo;Seo, Joo-Hwan;Son, Sung-Woo;Jeong, Jae-Won;Kim, Ji-Sun;Lee, Ji-Hye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1279-1287
    • /
    • 2009
  • An increasingly competitive business environment has been concentrated on industries to reduce the operating costs. Industries such as gas, oil, petrochemical, chemical, and electric power have employed for the operation and used for large equipment or structures that require a high capital investment. In order to meet these requirements, the industries are increasingly moving toward saving the experimental verification and computer simulation. Therefore industries to reduce the maintenance costs without compromising the operational safety have been forced on finding for better and more efficient methods to inspect their equipment and structures. In this study, it focused on the development the real-time non-contract monitoring system as an efficient tool for the experimental study of weld defects based on the relationship between the measured voltage and input parameters.

Long-Range Guided Wave Inspection of Structures Using the Magnetostrictive Sensor

  • Kwun, He-Geon;Kim, Sang-Young;Light, Glenn M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.383-390
    • /
    • 2001
  • Long-range guided wave inspection is a new emerging technology for rapidly and globally inspecting a large area of a structure from a single test location. This paper describes a general overview of the guided wave properties and its application for long-range inspection of structures the principle and instrument system for a guided wave inspection technology called "magnetostrictive sensor (MsS)" that generates and detects guided waves electromagnetically in the material under testing, and examples of long-range guided wave inspection of structures that can be accomplished using the MsS.

  • PDF

Magnetic Impeadance Effects by the Displacement of Amorphous Ribbon (아몰퍼스 리본의 변위에 의한 자기임피던스 효과)

  • 신용진;소대화;김현욱;임재근;강재덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.73-76
    • /
    • 1999
  • In this thesis, we fabricate a zero-magnetostrictive amorphous ribbon measure the impeadance effect, and then Investigate possibility as a sensor material. $Co_{72.5}$F $e_{0.5}$M $o_{2}$ $B_{15}$ S $i_{5}$ is used as composition of specimen alloy. We first melt the specimen in high frequency induction furnace and then rapidly quench it by using single roll technique. As the result, we obtain a ribbon where thickness is 12${\mu}{\textrm}{m}$, width is 1mm and length is 93mm. Consequently, it is proved through this study that zero-magnetostrictive amorphous ribbon can be used as an excellent magnetic sensor material.rial.l.

  • PDF

Sensing of ultra-low magnetic field by magnetoelectric (ME) composites (자기-전기(ME) 복합체를 활용한 초미세 자기장 감지 기술)

  • Hwang, Geon-Tae;Song, Hyunseok;Jang, Jongmoon;Ryu, Jungho;Yoon, Woon-Ha
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.38-53
    • /
    • 2020
  • Magnetoelectric (ME) composites composed of magnetostrictive and piezoelectric materials derive interfacial coupling of magnetoelectric conversion between magnetic and electric properties, thus enabling to detect ultra-low magnetic field. To improve the performance of ME composite sensors, various research teams have explored adopting highly efficient magnetostrictive and piezoelectric phases, tailoring of device geometry/structure, and developing signal process technique. As a result, latest ME composites have achieved not only outstanding ME conversion coefficient but also sensing of ultra-low magnetic field below 1pT. This article reviews the recent research trend of ME composites for sensing of ultra-low magnetic field.

Study on Rod Position Indication System using Permanent Magnets with Shielding Plates for a Control Rod Drive Mechanism

  • Lee, Jae Seon;Cho, Sang Soon;Kim, Jong Wook
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.439-443
    • /
    • 2015
  • A control rod drive mechanism (CRDM) is an electromechanical equipment that provides linear movement for the control rods to control the nuclear reactivity in a nuclear reactor. A rod position indication system (RPIS) detects the control rod's position. To enhance the measurement accuracy of the system, a magnetostrictive type sensor with capability of generating operation limiting signals would be adapted instead of a conventional RPIS for a CRDM. An RPIS was modelled for a numerical analysis with the permanent magnets at the stationary limit positions and magnetic shielding plates with a moving permanent magnet. The performance analysis of the RPIS were conducted, and the results were discussed here.