• Title/Summary/Keyword: Magnetostrictive materials

Search Result 54, Processing Time 0.025 seconds

High Magnetoelectric Properties in 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 Single Crystal and Terfenol-D Laminate Composites

  • Ryu, Jung-Ho;Priya, Shashank;Uchino, Kenji;Kim, Hyoun-Ee;Viehland, Dwight
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.813-817
    • /
    • 2002
  • Magnetoelectric(ME) laminate composites of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3 (PMN-PT)$ and Terfenol-D were prepared by sandwiching single crystals of PMN-PT between Terfenol-D disks. The magnetoelectric voltage coefficient (dE/dH) of the composite was determined to be 10.30 V/cm${\cdot}$Oe, at 1 kHz and under a dc magnetic bias of 0.4 T. The value of dE/dH is ∼80 times higher than either that of naturally occurring magnetoelectrics or artificially-grown magnetoelectric composites. This superior magnetoelectric voltage coefficient is attributed to the high piezoelectric voltage constant as well as the high elastic compliance of PMN-PT single crystal and the large magnetostrictive response of Terfenol-D.

The development of ultrasonic transmitter to enhance the efficiency of heat transfer rate in boiler (보일러내 열 전달 효율 개선을 위한 초음파발신기 개발)

  • Heo, Pil-Woo;Lee, Yang-Lae;Lim, Eui-Su;Koh, Kwang-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.95-101
    • /
    • 2003
  • Ultrasonic transmitter used for scale prevention in boiler or heat exchanger is composed of the magnetostrictive material which transforms electric energy into ultrasonic wave and the horn which amplifies generated ultrasonic wave and transfers it into medium loaded. In this paper, we have performed the shape design for magnetostrictive material and analyzed a few type of horns which amplify generated ultrasonic wave and found each solution theoretically. Final length of the horn has been determined by measuring the sound pressure in medium between theoretical value and experience data. At last we have given the results of our study for the effects of ultrasonic wave irradiated by manufactured ultrasonic transmitter on preventing scale deposition on test pipe under the similar condition to boiler.

THE MAGNETOSTRICTIVE PROPERTIES OF Dy-Fe-B ALLOYS WITH NANOCRYSTALLINE GRAIN STRUCTURE

  • Lim, S.H.;Kim, S.R.;Noh, T.H.;Lee, S.R.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.795-799
    • /
    • 1995
  • The magnetostriction versus field (${\lambda}-H$) curves for the melt-spun ribbons of $Dy_{x}{(Fe_{1-y}B_{y})}_{1-x}$ (x=0.2, 0.25, 0.3; y=0, 0.05, 0.1, 0.15, 0.2) alloys are measured systematically at various wheel speeds ranging from 10 to 50 m/sec. The ${\lambda}-H$ curves in most cases vary sensitively with the wheel speed and, in the wheel speed range where no amorphous phase is formed, the magnetic softness improves rather continuously with the wheel speed. This result is considered to be due to the reduced grain size with increasing wheel speed, which was confirmed by X-ray diffraction and transmission electron microscopy. In particular, homogeneous and ultrafine grains with size of about 10 nm are formed even in the as-spun state when the $Dy_{0.3}{(Fe_{1-y}B_{y})}_{0.7}$ alloys are quenched at the wheel speed of 30 m/sec (for the alloy with y=0.2) or 40 m/sec (for the alloys with $y{\leq}0.15$) and the ribbons having the nanocrystalline grain structure exhibit good magnetostrictive characteristics.

  • PDF

APPLICATION OF GIANT MAGNETOSTRICTIVE MATERIAL TO DISC BRAKE ACTUATOR

  • OGAWA, Yutaka;MURATA, Yukio;KAWASE, Kazuo;WAKIWAKA, Hiroyuki;MIZUNO, Tsutomu;YAMADA, Hajime
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.560-563
    • /
    • 1998
  • For the next generation railway brake system, a disc brake which can be operated directly and electrically is strongly expected. This paper deals with newly developed disc brake actuator using giant magnetostrictive materials(GMM) which can be integrated with disc brake. Regarding the brake system performance, a better delay time was also attained which can be integrated with disc brake. Regarding the brake system performance, a better delay time was also attained which will contribute to shorten a stopping distance.

  • PDF

The Fabrication of Micro Actuator Used Micro Electro-Magnet and Magnetostrictive Thin Film (마이크로 전자석과 자기변형박막을 이용한 마이크로 엑추에이터의 제작)

  • Seo, Jee-Hoon;Yang, Sang-Sik;Jeong, Jong-Man;Lim, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3328-3330
    • /
    • 1999
  • In this paper, the fabrication of a micro actuator with a micro electromagnet and an actuator diaphragm is presented. The micro electromagnet consists of a magnetic core and a micro inductive planar coil. The actuator diaphragm is the p+ silicon diaphragm on both sides of which magnetostrictive materials are deposited by sputtering. The micro electromagnet is fabricated by sputtering, evaporating, etching and electroplating. The magnetic flux density of the micro electromagnet is measured by using the gauss meter. The deflection of the actuator diaphragm is measured by using the laser vibrometer and optic microscope.

  • PDF

Nonlinear dynamics of an adaptive energy harvester with magnetic interactions and magnetostrictive transduction

  • Pedro V. Savi;Marcelo A. Savi
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.281-290
    • /
    • 2024
  • This work investigates the mechanical energy harvesting from smart and adaptive devices using magnetic interactions. The energy harvester is built from an elastic beam connected to an electric circuit by a magnetostrictive material that promotes energy transduction. Besides, magnetic interactions define the system stability characterizing multistable configurations. The adaptiveness is provided by magnets that can change their position with respect to the beam, changing the system configuration. A mathematical model is proposed considering a novel model to describe magnetic interactions based on the single-point magnet dipole method, but employing multiple points to represent the magnetic dipole, which is more effective to match experimental data. The adaptive behavior allows one to alter the system stability and therefore, its dynamical response. A nonlinear dynamics analysis is performed showing the possibilities to enhance energy harvesting capacity from the magnet position change. The strategy is to perform a system dynamical characterization and afterward, alter the energetic barrier according to the environmental energy sources. Results show interesting conditions where energy harvesting capacity is dramatically increased by changing the system characteristics.

Magnetic Sensors and Actuators

  • Pasquale, M.
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.60-69
    • /
    • 2003
  • A review of mechanical sensing techniques based on magnetic methods is presented, with special reference to magnetoelastic strain gauges and force sensors. A novel strain sensor based on soft amorphous ribbons is described. Other types of magnetic sensors, for the measurement of torque and displacement are briefly discussed. An overview of magnetic actuators based on giant magnetostrictive materials, with some practical examples, is presented. Recent advances in the development and application of magnetic shape memory materials are discussed, together with the analysis of recent studies for the description of magnetic shape memory phenomena.

Magnetostrictive and Magnetic Properties of Amorphous ${Tb_{45.7}}{Fe_{54.3-x}}{Co_x}$${Tb_{50.2}}{Fe_{49.8-x}}{Co_x}$ (0$\leqq$x$\leqq$9.6) Alloy Thin Films (비정질 ${Tb_{45.7}}{Fe_{54.3-x}}{Co_x}$${Tb_{50.2}}{Fe_{49.8-x}}{Co_x}$ (0$\leqq$x$\leqq$9.6) 합금박막의 자기변형 및 자기적 특성)

  • Choi, Y.S.;Cho, S.S.;Yoon, G.G.;Lee, W.S.;Li, Ying;Kim, C.O.
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.713-717
    • /
    • 2001
  • The magnetic and magnetostrictive properties of amorphous Tb/sub 45.7/Fe/sub 54.3-x/Co/sub x/ and Tb/sub 50.2/Fe/sub 49.8-x/Co/sub x/ (0≤x≤9.6) thin films have systematically been investigated. The films were fabricated by rf magnetron sputtering using a composite target which consists of a Fe plate and Tb, Co chips. The microstructure mainly consists of an amorphous phase. Excellent intrinsic and low magnetic-field-magnetostrictive properties were achieved in Tb/sub 45.7/Fe/sub 54.3-x/Co/sub x/ and Tb/sub 50.2/Fe/sub 49.8-x/Co/sub x/ (0≤x≤9.6). The magnetostriction of 130 ppm was obtained with low field of 100 Oe. The intrinsic magnetostriction(applied field, 5 kOe) were increased from 330ppm to 400ppm.

  • PDF

Effects of Precipitate Element Addition on Microstructure and Magnetic Properties in Magnetostrictive Fe83Ga17 alloy

  • Li, Jiheng;Yuan, Chao;Zhang, Wenlan;Bao, Xiaoqian;Gao, Xuexu
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • The <100> oriented $Fe_{83}Ga_{17}$ alloys with various contents of NbC or B were prepared by directionally solidification method at the growth rate of $720mm{\cdot}h^{-1}$. With a small amount of precipitates, the columnar grains grew with cellular mode during directional solidification process, while like-dendrite mode of grains growth was observed in the alloys with higher contents of 0.5 at% due to the dragging effect of precipitates on the boundaries. The NbC precipitates disperse both inside grains and along the boundaries of $Fe_{83}Ga_{17}$ alloys with NbC addition, and the Fe2B secondary phase particles preferentially distribute along the grain boundaries in B-doped alloys. Precipitates could affect grain growth and improved the <100> orientation during directional solidification process. Small amount of precipitate element addition slightly increased the magnetostrictive strain, and a high value of 335 ppm under pre-stress of 15 MPa was achieved in the alloys with 0.1 at% NbC. Despite the fact that the effect on magnetic induction density of small amount of precipitates could be negligible, the coercivity markedly increased with addition of precipitate element for $Fe_{83}Ga_{17}$ alloy due to the retarded domain motion resulted by precipitates.