• 제목/요약/키워드: Magnetostrictive actuator

검색결과 48건 처리시간 0.026초

자기변형 구동기를 이용한 보의 진동제어 (A Study on Vibration Control of a Beam Using Magnetostrictive Actuators)

  • 임채욱;문석준;정태영;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.433-438
    • /
    • 2003
  • In this paper we explore the effectiveness of a magnetostrictive actuator(MSA) as a structural control device. A series of numerical and experimental tests are carried out with a simple aluminum beam only supported at each end by the actuator. After the equation of motion of the controlled system is obtained by the finite element method, a model reduction is performed to reduce the numbers of degree of freedom. A linear quadratic feedback controller is realized on a real-time digital control system to damp the first four elastic modes of the beam. Through some tests, we confirmed the possibility of this actuator for controlling beam-like structures.

  • PDF

유한 요소 해석을 통한 자기변형 구동기 자기 회로 설계 (The design of magnetic circuit of magnetostrictive actuator using finite element method)

  • 이석호;박영우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.548-551
    • /
    • 2004
  • Magnetostrictive actuators have seen increasing use in fine positioning system because it has many advantages such as friction free, resolution of ${\mu}{\textrm}{m}$ or nm scale, and powerful output force. Usually, the magnetic circuit of magnetostrictive actuator has components which are flux return path, coil, and magnetostrictive material. It is classified in two types according to existence of the permanent magnet. The magnetic circuit having optimal performances transfer magnetic field which is obtained by providing input current at coil without energy loss. This paper described mathematical model of magnetic circuit for getting design variables. The modeling equation is obtained from the relations between flux and reluctance of the magnetic equivalent circuit. Also, finite element analysis has been used to study the performance of magnetic circuit according to change of design variables such as existence and shape of the permanent magnet, flux return path etc. The modification of dimensions enables us to optimize magnetic circuit.

  • PDF

자석바퀴기반 자기변형 에너지하베스터의 개념증명 (Proof-of-Concept of Magnetic Wheel-Based Magnetostrictive Energy Harvester)

  • 신봉희;박영우
    • 한국정밀공학회지
    • /
    • 제32권5호
    • /
    • pp.483-490
    • /
    • 2015
  • This paper presents a proof-of-concept of a wheel-based magnetostrictive energy harvester (EH), which is a vibration-based EH. Coil-wound Galfenol cantilevers with two permanent magnets (PMs) act EH, while rotating wheels provide a forced vibration to EH. Four different cantilevers are designed and simulated for various end deflection. As expected from the simulation, the cantilever end deflection with triple cavity is the most. Three experiments are conducted to characterize the EH: the first with a magnetostrictive actuator, the second with a motor-driven wheel, and the third with the dummy weights. From the first experiment, the power reaches about 50 mV due to the relatively small displacement of the magnetostrictive actuator. From the second experiment, the power reaches about 120 mW. The power from the Galfenol cantilever is estimated to be about 60% of the total power from the wheel-based magnetostrictive EH.

자기 변형 공진 기구를 이용한 레이저 스캐닝 진동측정기에 관한 연구 (A Study on a Laser Scanning Vibrometer Using a Magnetostrictive Resonant Device)

  • 이정화;류제길;박기환
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.58-66
    • /
    • 1998
  • A low power consuming laser scanning vibrometer is studied for its development. For its optical system, a laser interferometer is constructed to use the Doppler effect. In order to reduce the driving power of the scanning system, a small displacement of the scanning system is produced, which is achieved by using a magnetostrictive actuator. A sufficient rotating angle of the scanning system is obtained by using an amplified displacement from the resonant phenomena of a second order mechanical system composed of a mass and spring. The control of the magnetostrictive actuator using a Terfenol-D is performed without using a feedback system to help reduce the power consumption. The vibration analysis is made for the sinusoidal scanning input to have the space domain information from the time domain of the velocity of a vibration object. As a partial work of development of a tow power consuming laser scanning vibrometer, in this work, a scanning system which has the above features is developed and experimentally investigated. For the purpose of the optical system calibration, the vibration measurement for one axis is presented and the future works are discussed.

  • PDF

A full-range hybrid device for sound reproduction

  • Braghin, Francesco;Castelli-Dezza, Francesco;Cinquemani, Simone;Resta, Ferruccio
    • Smart Structures and Systems
    • /
    • 제11권6호
    • /
    • pp.605-621
    • /
    • 2013
  • The paper deals with the design of a device for sound reproduction to be fixed to a supporting surface. The device is made up of two different types of acoustic actuators based on different technologies. This allows to reproduce sound in the range of frequencies from 20 Hz to 20 kHz. The generation of sound at high frequencies is demanded to a magnetostrictive actuator, while a more traditional magnetodynamics actuator is used to generate sound at low frequencies. The coupling between these two actuators leads to a device having small overall dimensions and high performance.

마이크로 전자석과 자기변형박막을 이용한 마이크로 엑추에이터의 제작 (The Fabrication of Micro Actuator Used Micro Electro-Magnet and Magnetostrictive Thin Film)

  • 서지훈;양상식;정종만;임상호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3328-3330
    • /
    • 1999
  • In this paper, the fabrication of a micro actuator with a micro electromagnet and an actuator diaphragm is presented. The micro electromagnet consists of a magnetic core and a micro inductive planar coil. The actuator diaphragm is the p+ silicon diaphragm on both sides of which magnetostrictive materials are deposited by sputtering. The micro electromagnet is fabricated by sputtering, evaporating, etching and electroplating. The magnetic flux density of the micro electromagnet is measured by using the gauss meter. The deflection of the actuator diaphragm is measured by using the laser vibrometer and optic microscope.

  • PDF

자기변형소자를 이용한 선형 액츄에이터에 대한 기초연구 (A basic study on the linear actuator using magnetostrictive device)

  • 김병호;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.69-71
    • /
    • 1994
  • In fabricating linear actuator using the GMA(Giant Magnetostrictive Alloy : Terfenol-D). the clamping unit is needed to accumlate each displacement from the GMA rod. Two types of the clamping unit (one is using piezoelectric device and the other electromagnetic farce) were made and tested. From the result of the experiment, we conclude that the electromagnetic clamping unit has advantages over the piezoelectric clamping unit.

  • PDF

히스테리시스를 갖는 미세 구동기의 실시간 제어 알고리즘 (Preisach model based Real-time control for systems with Hysteresis)

  • 이아람;이지홍
    • 전자공학회논문지SC
    • /
    • 제45권1호
    • /
    • pp.31-40
    • /
    • 2008
  • 본 논문에서는 자기변형재료를 이용한 미세 구동기의 개발과 실시간 제어 알고리즘에 관한 내용을 다룬다. 자기변형재료는 빠른 응답속도, 미세변위동작, 높은 에너지 효율 등의 장점을 가지고 있어 미세 구동기의 재료로 적합하지만 히스테리시스 특성도 함께 갖고 있어 제어에 많은 어려움이 따른다. 본 논문에서는 자기변형재료의 히스테리시스를 제어하기위해 Preisach model을 바탕으로 구동기를 모델링 하였다. 기존의 Preisach 모델은 실험적 데이터를 바탕으로 하기 때문에 정밀한 제어를 하기 위해서는 많은 양의 데이터가 필요하고 결과적으로는 처리해야할 데이터의 양이 많아져 연산하는데 많은 시간이 걸리는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 기존의 Preisach 모델의 데이터를 선행 처리하여 일정구간 구동기의 움직임을 저장해 놓은 확장된 Preisach 모델을 제안하였다. 본 논문에서는 Tefenol-D라는 자기변형재료를 사용하여 미세구동기를 제작하고 제어 실험을 통하여 제안된 모델의 우수성을 증명하였다.

Effects of Elastic Energy of Thin Films on Bending of a Cantilevered Magnetostrictive Film- Substrate System

  • Si, Ho-Mun;Chongdu Cho;Kim, Chang-Boo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.622-629
    • /
    • 2004
  • In this paper, effects of elastic energy of magnetostrictive film on the deflection of a cantilevered film-substrate system are investigated. The total energy including the elastic energy of magnetostrictive film is formulated. And it is minimized to give the curvatures and the position of neutral axis of the cantilevered system. To discuss the effects of the elastic energy of film in a measured system, three magnetostrictive unimorph cantilevers and a bimorph cantilever reported elsewhere are reviewed. It is shown that the assumption, since the thickness of film is much smaller than that of substrate the film elastic energy is negligible, can cause considerable error in evaluating magnetostrictive coefficients. Not the ratio of thicknesses but elastic energies between film and substrate is also shown to play important role in making decision whether the assumption is valid or not.

자기변형 엑츄에이터를 이용한 선형모터 (A Linear Motor Using a Magnetostrictive Actuator)

  • 박영우;석용태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1841-1844
    • /
    • 2005
  • A linear motor makes a long stroke by accumulating short steps, which is based on the quasistatic deformation of a magnetostrictive material in a magnetic field. It's also called as inchworm effect. The application areas of linear motors are an adaptive and active optics, X-Y positioning, precision alignment, etc. It is found that control of the frequency and current inputs are all that is necessary to control the speed handling ability of the linear motor. In inchworm mode, linear speeds of up to $500{\mu}m/s$ are achieved resulting from the accumulation of $25{\mu}m$ steps at 1.4A.

  • PDF