• 제목/요약/키워드: Magnetostrictive Vibration

검색결과 79건 처리시간 0.024초

조향 자기변형 트랜스듀서의 전단파 방사 패턴 (Radiation Pattern of SH Waves Generated by an Orientation-adjustable Patch-type Magnetostrictive Transducer)

  • 전병철;이주승;조승현;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.807-808
    • /
    • 2008
  • This is concerned with the radiation pattern of elastic waves in a plate generated by an orientation-adjustable patch-type magnetostrictive transducer. In general, not only the Lamb waves but also shear horizontal (SH) waves are produced by the deformation of the circular magnetostrictive patch bonded to a plate. Among the two types of waves, this paper investigates the radiation patterns of SH waves. A number of experimental results are presented. They are also accurately predicted by a theory developed by the present authors. Experimental findings were explained by a theoretical analysis.

  • PDF

진동절삭기 구성을 위한 자기변형 재료의 진동 특성 규명 (Vibrational Characteristics of Magnetostrictive Materials for a Vibration Assisted Cutting Device)

  • 이호철;김기대
    • 한국정밀공학회지
    • /
    • 제29권11호
    • /
    • pp.1214-1220
    • /
    • 2012
  • Vibration assisted cutting (VAC) is one of the promising methods for precision machining, which has been normally equipped with piezoelectric materials. In this paper, a feasibility of applying magnetostrictive materials to VAC as a cutting device instead of piezoelectric materials was studied. For this, the vibrational characteristics of a magnetostrictive material was investigated with respect to a coil design, a preload, and the effects of a biasing and an exciting magnetic fields. The output strain of a magnetostrictive material is restricted due to an increasing inductive impedance as the exciting frequency increases and the heat of coil, etc. Through the experimental results, it was found that the biasing and the exciting magnetic field affected the output performance significantly but not the preload. In conclusion, the magnetostrictive material could be used only in the low frequency range but not a good candidate for high frequency actuating application.

자기 변형 패치를 이용한 비자성 배관의 비접촉 종진동 모달 테스팅 (Non-contact Longitudinal Modal Testing of a Non-ferromagnetic Pipe Using Magnetostrictive Patches)

  • 박찬일;한순우;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제18권3호
    • /
    • pp.293-298
    • /
    • 2008
  • Non-contact modal testing for longitudinal modes of a pipe is discussed in this work. The suggested method can generate and measure longitudinal vibrations without mechanical contact by using the coupling phenomenon between deformation and magnetic field, known as the magnetostrictive effect. This effect has been used to generate and measure ultrasonic waves, but seldom used to deal with audible vibrations. In this investigation, the validity of the developed method in a typical vibration frequency range is checked with an Inconel pipe being used in nuclear power plants.

자기변형 구동기를 이용한 보의 진동제어 (A Study on Vibration Control of a Beam Using Magnetostrictive Actuators)

  • 임채욱;문석준;정태영;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.433-438
    • /
    • 2003
  • In this paper we explore the effectiveness of a magnetostrictive actuator(MSA) as a structural control device. A series of numerical and experimental tests are carried out with a simple aluminum beam only supported at each end by the actuator. After the equation of motion of the controlled system is obtained by the finite element method, a model reduction is performed to reduce the numbers of degree of freedom. A linear quadratic feedback controller is realized on a real-time digital control system to damp the first four elastic modes of the beam. Through some tests, we confirmed the possibility of this actuator for controlling beam-like structures.

  • PDF

자기 변형 패치를 이용한 비자성 배관의 비접촉 종진동 모달 테스팅 (Non-contact Longitudinal Modal Testing of a Non-ferromagnetic Pipe Using Magnetostrictive Patches)

  • 박찬일;한순우;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1343-1347
    • /
    • 2006
  • Non-contact modal testing for longitudinal modes of a pipe is discussed in this work. The suggested method can generate and measure longitudinal vibrations without mechanical contact by using the coupling phenomenon between deformation and magnetic field, known as the magnetostrictive effect. This effect has been used to generate and measure ultrasonic waves, but seldom used to deal with audible vibrations. In this investigation, the validity of the developed method in a typical vibration frequency range is checked with an inconel pipe being used in nuclear power plants.

  • PDF

자석바퀴기반 자기변형 에너지하베스터의 개념증명 (Proof-of-Concept of Magnetic Wheel-Based Magnetostrictive Energy Harvester)

  • 신봉희;박영우
    • 한국정밀공학회지
    • /
    • 제32권5호
    • /
    • pp.483-490
    • /
    • 2015
  • This paper presents a proof-of-concept of a wheel-based magnetostrictive energy harvester (EH), which is a vibration-based EH. Coil-wound Galfenol cantilevers with two permanent magnets (PMs) act EH, while rotating wheels provide a forced vibration to EH. Four different cantilevers are designed and simulated for various end deflection. As expected from the simulation, the cantilever end deflection with triple cavity is the most. Three experiments are conducted to characterize the EH: the first with a magnetostrictive actuator, the second with a motor-driven wheel, and the third with the dummy weights. From the first experiment, the power reaches about 50 mV due to the relatively small displacement of the magnetostrictive actuator. From the second experiment, the power reaches about 120 mW. The power from the Galfenol cantilever is estimated to be about 60% of the total power from the wheel-based magnetostrictive EH.

자기변형 트랜스듀서를 이용한 평판구조물의 특정방향 가진 및 측정 (The Actuation and Measurement of plate Structures at a Specific Direction by a Magnetostrictive Transducer)

  • 이주승;조승현;선경호;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.153-158
    • /
    • 2004
  • The coupling phenomenon between stress and magnetic induction, known as magnetostriction, has been successfully applied to generate and measure elastic waves. Most applications of this phenomenon thus far, however, are rather limited to cylindrical ferromagnetic waveguides. The main objective of this work is to develop a new patch-type, orientation-adjustable magnetostrictive transducer that is applicable for non-cylindrical, non-ferromagnetic waveguides. The existing patch-type transducer consisting of a ferromagnetic patch and a racetrack coil is useful to generate elastic waves only in one specific direction once the patch is bonded to a test specimen. However, the proposed transducer can transmit and receive elastic waves in any direction only with one patch at a given location. The proposed magnetostrictive transducer consists of a circular nickel patch, a figure-of-eight coil, and a couple of bias permanent magnets. Because of the unique configuration of the transducer, the propagating direction of the generated waves can be freely controlled since the set of bias magnets and the coil is not bonded to the magnetostrictive patch. In this work, the characteristics of the proposed transducer were investigated experimentally.

  • PDF

Terfenol-D를 이용한 선형 자기변형 구동기의 설계 및 특성 연구 (A Study on Design and Characteristics of Linear Magnetostrictive Actuator Using Terfenol-D)

  • 임채욱;정태영;문석준;김병헌
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.17-24
    • /
    • 2002
  • Terfenol-D is one of magnetostrictive materials which have the property of converting the energy in magnetic fields into mechanical movement and vice versa. We designed and fabricated a linear magnetostrictive actuator using Terfenol-D. It has 25mm diameter and 100mm long. To grasp the characteristics of it, n series of tests were performed in the range of 50Hz below. Induced-strain actuation displacements of the actuator measured by test and predicted by magnetic analysis agreed well. And blocked forces according to the input currents were estimated from the testing results. Modelling method representing the exerting force of a linear magnetostrictive actuator was confirmed through some testing results.

  • PDF

최적 요크를 갖는 자기변형 그레이팅을 이용한 고출력 주파수 튜닝 평판 SH 파 발생 (Magnetostrictive Grating with an Optimal Yoke for Generating High-Output Frequency-Tuned SH Waves in a Plate)

  • 김우철;김익규;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.71-74
    • /
    • 2007
  • The objective of this presentation is to introduce a recent development of a magnetostrictive grating technique using an optimal yoke to efficiently generate and measure SH (Shear-Horizontal) waves in a plate. Gratings are effective means to generate frequency-tuned waves, but the gap between magnetostrictive gratings inevitably obstructs magnetic flow. Because magnetic field is the main physical quantity to actuate and sense ultrasonic waves, the transducer performance is most significantly influenced by the magnetic field distribution in the strips. Thus, wave transduction efficiency can be substantially improved if better magnetic flow is formed in the strips. To improve the efficiency, the topology optimization method was used to determine an optimal yoke configuration. A series of experiments on an aluminum plate were conducted using a grating with and without the designed yoke; when the yoke was used, the signal outputs increased up to 60 %.

  • PDF

마그네토스트릭션 센서 성능 향상을 위한 바이어스 자기장의 위상 최적설계 (Topology Optimization of a Bias Magnetic Field for the Performance Improvement of a Magnetostrictive Sensor)

  • Cho, Seung-Hyun;Kim, Youngkyu;Kim, Yoon-Young
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.554-558
    • /
    • 2002
  • A magnetostrictive sensor is used to measure stress waves propagating in a ferromagnetic cylinder without physical contact. The performance of a magnetostrictive sensor is affected most significantly by the bias magnetic field applied around the measurement location. The goal of this paper is to carry out the topology optimization of the bias magnet and yoke assembly to maximize the sensor output for traveling bending waves. We will use the multi-resolution topology optimization strategy to find the assembly of the bias magnet and the yoke that is easy to realize. The effectiveness of the present design is confirmed by an actual measurement of the sensor signal with the proposed bias magnet and yoke configuration.

  • PDF