• 제목/요약/키워드: Magneto-rhological Fluid

검색결과 2건 처리시간 0.019초

자기유변유체를 활용한 연마공정에 대한 기초연구 (A Preliminary Study on Polishing Process using Magnetorheological Fluid)

  • 황봉하;민병권;이상조;석종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.464-467
    • /
    • 2005
  • Among several polishing techniques for micro structures, polishing process using magnetorheological(MR) fluid has advantages in the finishing process of 3-D micro structures because abrasives in the fluid can reach surfaces with complex feature and play their role. Although many researchers have been trying to reveal its polishing mechanism of the MR polishing, it has not been successful because in-situ measurement of state variables is difficult and process parameters are complex. In fact, one of the key factors for applying process control methodologies, such as Run-to-Run control, is the measuring and monitoring of slurry quality because the process strongly depends on the fluid property. Therefore, it is necessary to maintain consistent slurry quality to guarantee the process repeatability. The proposed equipment achieves the longer life cycle of MR fluid and reduces the variability of products. A new method to measure the material removal rate in MRF polishing process is also proposed and discussed.

  • PDF

전자제어 현가장치를 위한 MR 쇽 업소버의 설계 및 제어 (Design and Control of a MR Shock Absorber for Electronic Control Suspension)

  • 성금길;최승복
    • 한국정밀공학회지
    • /
    • 제28권1호
    • /
    • pp.31-39
    • /
    • 2011
  • This paper presents design and control of a quarter-vehicle magneto-rheological (MR) suspension system for ECS (electronic control suspension). In order to achieve this goal, MR shock absorber is designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial mid-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the manufactured MR shock absorber, the quarter-vehicle MR suspension system consisting of sprung mass, spring, tire and the MR shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, the skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. In order to present control performance of MR shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration of sprung mass and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.