• Title/Summary/Keyword: Magnetizing Inductance

Search Result 83, Processing Time 0.028 seconds

Compensation for the Secondary Current of an Air-gapped Current Transformer (공극 변류기의 2차 전류 보상)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun;Park, Ji-Youn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.149-154
    • /
    • 2008
  • An air-gapped current transformer(CT) has been used to reduce a remanent flux in the core, particularly in the case of auto-reclosure. However, it causes larger transient, ratio and phase errors than the iron-cored CT because of the small magnetizing inductance. This paper proposes a compensation algorithm for the secondary current of the air-gapped CT during the fault conditions including auto-reclosure as well as in the steady-state. The core flux is calculated from the measured secondary current of the CT and inserted into the hysteresis loop to estimate the exciting current. Finally, the correct current is estimated by adding the measured secondary current to the estimated exciting current. Various test results clearly indicate that the proposed compensating algorithm can improve the accuracy of the air-gapped CT significantly and reduce the required core cross-section of the air-gapped CT significantly.

A Study on the Characteristics of PMASynRM for Zero Inductance of Q-axis (Q축 제로 인덕턴스를 위한 영구자석 매입형 동기 릴럭턴스 전동기 특성 연구)

  • Seo, Jun;Kim, Young-Hyun;Kim, Hong-Seok;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.894-895
    • /
    • 2015
  • This paper deals with the characteristic analysis & optimum design of Permanent Magnet Assisted Synchronous Reluctance Motor(PMASynRM) for Premium Efficiency Performance. The focus of this paper is characteristic analysis of d and q-axis inductances and torque according to magnetizing quantity of interior permanent magnet for PMASynRM. The d and q-axis current component ratios, load angles of a PMASynRM are investigated quantitatively on the basis of the proposed analysis method and the experimental test. Comparisons are given with output characteristic curves of PMASynRM and those according to the rated wattage in PMASynRM, respectively. And optimum design of PMASynRM is performed by Response Surface Methodology(RSM).

  • PDF

Loss Modeling in order to Predict the Efficiency Performance of Induction Motor Drive System (유도전동기 드라이브 시스템의 효율성능을 예측하기 위한 손실 모델링)

  • 정동화;박기태;이정철
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.56-61
    • /
    • 2000
  • The precise and reliable loss model for induction motor and converter system is very important in order to predict the efficiency performance of variable speed drives. This paper proposes an accurate loss model of induction motor and converter system. The motor losses, such as stator and rotor copper loss, core loss and stray loss, are considered for fundamental and harmonic frequencies. Also considered are the skin effect on rotor resistance, temperature effect on bath stator and rotor resistance, magnetizing inductance saturation, and friction and windage loss. All the above features are incorporated in a synchronous frame dynamic d-q equivalent circuit. The converter system, consisting of a diode rectifier and PWM transistor inverter, is modeled accurately for conduction and switching losses. Validity of the models, in both steady state and transient conditions, is verified by simulations.

  • PDF

Vector Control Simulation of Single Sided Linear Induction Motor (편측형 선형유도전동기의 벡터제어 시뮬레이션)

  • Chung Byung-Ho;Lim Hong-Woo;Choi Youn-Ok;Cho Geum-Bae;Baek Hyung-Lae;Oh Geum-Gon
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.209-212
    • /
    • 2002
  • LIM have mainly different point considering rotary induction motor, that is end effect. In this paper described that, end effect, adding to the rotary induction motor, They can be designed because of affects magnetizing inductance and series resistance in the d-axis circuit. After LIM modeling, using SVPWM, apply to vector control this model. We can verify feasibility of field onented control technology can control speed by simulation.

  • PDF

Stator Flux-Oriented Control of Induction Motor Considering Iron-Loss (철손을 고려한 유도전동기의 고정자 자속기준 벡터제어)

  • 위성돈;신명호;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.149-153
    • /
    • 2000
  • Recently, some works to consider the influences of iron loss have been made in vector control of induction m motor. This paper investigates the effects of iron loss in stator flux-oriented system, and presents the control a algorithm to consider iron loss. The iron loss is modeled by equivalent iron loss resistance in parallel to m magnetizing inductance. The proposed method is verified by simulation and experimental results.

  • PDF

A Current Differential Relaying Algorithm for Power Transformers Using the Difference of a Differential Current (차전류의 차분을 이용한 변압기 보호용 전류차동 계전방식)

  • Kang, Y.C.;Kim, D.S.;Lee, B.E.;Kim, E.S.;Won, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.274-276
    • /
    • 2002
  • This paper proposes a current differential relaying algorithm for power transformers using the third difference function of a differential current. The algorithm observes the instants when the wave-shape of the differential current is changed due to the change of the magnetization inductance. If the value of the third difference is bigger than the threshold, the output of a current differential relay is blocked for a cycle. In the cases of magnetic inrush and overexcitation, the blocking signal is maintained: however, for internal faults, reset in a cycle. The test results clearly show that the algorithm successfully distinguishes internal faults from magnetizing inrush.

  • PDF

A Single Stage Isolated Power Factor Correction Power Supplies using Clamping Circuit (클램핑 회로를 이용한 단계층 절연 역률 보정 전원 공급장치)

  • Seo, Jai-Ho;Lee, Hee-Seung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2021-2023
    • /
    • 1998
  • In this paper we further propose to add a very simple regenerative clamping circuit to SSIPP to reduce the voltage stress and to recycle the energy trapped in the leakage inductance of the isolation transformer, thus eliminating the need for a lossy snubber circuit. In addition, this proposed clamping circuit also provides a mechanism to reset the magnetizing current of the output transformer of SSIPP employing a Forward converter as the output stage. Simulations and experimental results are reported to verify the operation and performance of the SSIPP with regenerative clamping.

  • PDF

Vector Control Simulation of Single Sided Linear Induction Motor (편측형 선형유도전동기의 벡터제어에 관한 연구)

  • Jeong, Byeong-Ho;Lee, Gang-Yeon;Cho, Geum-Bae;Baek, Hyeong-Lae;Choi, Chang-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.127-131
    • /
    • 2003
  • LIM have mainly different point considering rotary induction motor, that is end effect. In this paper described that, end effect, adding to the rotary induction motor. They can designed because of affects magnetizing inductance and series resistance in the d-axis circuit. After LIM modeling, using SVPWM, apply to vector control this model. We can verify feasibility of field oriented control technology can control speed by simulation.

  • PDF

Transient Simulation Studies of Squirrel-Cage Induction Motor Directly Supplied with Aircraft Variable Frequency Power

  • Du, Xiaofei;Wang, Deqiang;Zhou, Yuanjun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Aircraft variable frequency power and a new application of induction motor under the aero-power are introduced. The transient models and simulation of induction motor are reviewed. A new transient model and simulation method is presented that includes deep-bar effect and magnetic saturation. Dynamic magnetizing inductance, rotor resistance and leakage reactance are considered as varying parameters in state-space model. Base on known rotor structure and speed, these parameters can be calculated.

The Model-Following Robust Controller Design for the Vector-Controlled Induction Motor (벡터제어 유도전동기의 모델추종 견실제어기 설계)

  • Chi Hwan Lee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.93-101
    • /
    • 1993
  • The transfer function of vector-controlled induction motor is represented along with both unstructured and structured uncertainty such as the error of rotor time constant and current ripple. The low-pass-filter behavior of a magnetizing inductance gets rid of unstructured uncertainty in the transfer function. The robust controller to compensate variation of the transfer function is designed using simple P-I linear controllers. The coefficients of speed PI controller are determined from an overshoot and a rising time of system and the coefficients of model-following PI controller are obtained using the solution of Riccati equation of LQR control in the state space equation of the error system. Experimental results with the DSP-based model-following robust controller are shown a good robustness against the structured uncertainty of the motor.

  • PDF