• Title/Summary/Keyword: Magnetizing

Search Result 322, Processing Time 0.021 seconds

Characteristics Analysis of Magnetizing Circuit and Fixture considering Temperature Characteristic (온도특성을 고려한 착자회로 및 요크의 특성 해석)

  • Baek, Soo-Hyun;Maeng, In-Jae;Kim, Pill-Soo;Kim, Cherl-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.82-84
    • /
    • 1993
  • A method for simulating general characteristics and temperature characteristics of magnetizing fixture coil of the capacitor discharge impulse magnetizer-magnetizing fixture system using SPICE is presented. This method has been developed which can aid the design, understanding and inexpensive, time-saving of magnetizing circuit. As the detailed characteristics of magnetizing circuit can be obtained, the efficient design of the magnetizing circuit which produce desired magnet will be possible using our SPICE modeling. Especially, The knowledge of the temperature of the magnetizing fixture is very important to forecast the characteristics of the magnetizing circuits tinder different conditions. The capacitor voltage was not raised above 810[V] to protect the magnetizing fixture from excessive heating. The temperature estimation method uses multi-lumped model with equivalent thermal resistance and thermal capacitance.

  • PDF

Design of the Magnetizing System which is used for Magnetizing the NdFeB Magnet in a Squirrel Cage Rotor (유한요소해석을 이용한 영구자석매입형 유도성기동 동기전동기의 조립후 착자시스템 설계)

  • Lee, C.G.;Kwon, B.I.;Kim, B.T.;Woo, K.I.;Yang, B.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.404-406
    • /
    • 2001
  • This paper is about designing the magnetizing system which is used for magnetizing the NdFeB magnet in a squirrel cage rotor. It propose the shape of the magnetizing yoke, the number of coil turn and the capacitor discharging circuit parameter. In case of magnetizing the NdFeB magnet assembled with a squirrel cage rotor, the eddy current which is produced during magnetizing becomes a disturbance in magnetizing NdFeB magnet. Hence in this paper, we try to design optimized magnetizing system with eddy current considered by FEM(Finite Element Method).

  • PDF

Heat kTransfer Modeling and Characteristics Analysis of Impulsed Magnetizing Fisture (임펄스 착자요크의 열전달 모델링 및 특성 해석)

  • 백수현;김필수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.381-387
    • /
    • 1994
  • In this paper, we found the improved SPICE heat transfer modeling of impulsed magnetizing fixture system and investigated temperature characteristics using the proposed model. As the detailed thermal characteristics of magnetizing fixture can be obtained, the efficient design of the impulsed magnetizing fixture which produce desired magnet will be possible using our heat transfer modeling. The knowledge of the temperature of the magnetizing fixture is very important of forecast the characteristics of the magnetizing fixture which produce desired magnet will be possible using our heat transfer modeling. The knowledge of the temperature of the magnetizing fixture is very important to forecast the characteristics of the magnetizing circuits under different conditions. The capacitor voltage was not raised above 810[V] to protect the magnetizing fixture from excessive heating. The purpose of this work is to compute the temperature increasing for different magnetizing conditions. The method uses multi-lumped model with equivalent thermal resistance and thermal capacitance. The reliable results are obtained by using iron core fixture (stator magnet of air cleaner DC motor) coupled to a low-voltage magnetizer(charging voltage : 1000[V], capacitor : 3825[$\mu$F]. The modeling and experimental results are in close aggrement.

  • PDF

Analysis on magnetizing characteristics of current limiting reactor using HTSC module

  • Han, Tae Hee;Lim, Sung Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.1
    • /
    • pp.15-18
    • /
    • 2018
  • In this paper, the magnetizing characteristics of the current limiting reactor (CLR) using $high-T_C$ superconducting (HTSC) module were analyzed. Since the saturation of iron core comprising the CLR using HTSC module deteriorates its current limiting operation, the design of the CLR using HTSC module considering the magnetizing characteristics is needed. For the analysis on the magnetizing characteristics, the flux linkage and the magnetizing current of this CLR using HTSC module were derived from its electrical equivalent circuit. Through the analysis on the linkage flux versus the magnetizing current, obtained from the short-circuit tests, the suppressing effect of the iron core's saturation was discussed.

Characteristics for Current and Power of Induction Motor by Load Variation (부하변동에 따른 유도전동기 전류와 전력 특성)

  • Kim, Jong-Gyeum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.82-87
    • /
    • 2011
  • Induction motor is most widely used as the driving power in the industrial site. Induction motor current is composed of two parts, magnetizing current and load current. Load current uses energy what is doing the work. Load current varies with load variance but magnetizing current is constant, regardless of load variation. Magnetizing current needs for establishing the rotating magnetic field of induction motor and lags behind the voltage. Generally capacitor is used for power-factor compensation of inductive load. Self-excitation occurs when the capacitive reactive current from the capacitor is greater than the magnetizing current of the induction motor. When this occurs, excessive voltages can result on the terminals of the motor. This excessive voltage can cause insulation degradation and ultimately result in motor insulation failure. In this paper, we analyzed that how the magnetizing current and condenser current is operating at the allowable limit by the load variation. Condenser current is below allowable limit of magnetizing current but magnetizing current is above allowable limit at the lower load operation condition.

Vector Control of an Induction Motors for the Field Weakening Region With the Tuning of the Magnetizing Inductance (자화인덕턴스 추정을 이용한 약계자 영역에서의 유도전동기 벡터제어)

  • Choi, D.H.;Hyun, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.311-313
    • /
    • 1996
  • In case of field weakening region, the dynamic behavior of the speed controller depends on the rotor flux level. In this region, the flux is decreased inversely proportional to the rotor speed. As the rotor flux is decreased, as the magnetizing inductance is increased. In this paper, the effect of this increased magnetizing inductance to the performance of vector control is illustrated. The stationary reference frame torque not including the magnetizing inductance is calculated by stationary stator flux, and the rotating reference frame torque including the magnetizing inductance is calculated by rotating rotor flux. If the magnetizing inductance value is constant, two torque values are same regardless of the flux-component current. However, if the magnetizing inductance is varied, those two values are different. The paper presents the new tuning scheme of the magnetizing inductance using the difference between the stationary and rotating torque. Computer simulation demonstrates the efficacy of the proposed scheme.

  • PDF

Analysis of the Magnetizing Characteristics on Anisotropic Permanent Magnet (이방성영구자석의 착자특성 해석)

  • Lee, Hyang-Beom;Hahn, Song-Yop;Hong, Jung-Pyo;Choi, Hong-Soon
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.118-121
    • /
    • 1991
  • The characteristics of magnetizing system considering the anisotropy and the nonlinearity are analyrized using PEM in This paper. The case of magnetizing the ferrite magnet with 12 poles is analyrized. The anisotropy characteristic is considered when ferrite magnet which is widely used as permanent magnet is magnetized. The Nonlinear characteristic of magnetizing yoke aid ferrite is considered because the current is in the saturation region. When the magnetizing current value is over the optimum value, the magnet is magnetized with 24 poles. This is not the case of our expectation. Thus, for the case of our expected magnetizing form, it is the conclusion that the optimum magnetizing current value is selected.

  • PDF

Characteristics Analysis of Capacitor Discharge Impulse Magnetizing Circuit using SPICE (SPICE를 이용한 커패시터 방전 임펄스 착자 회로의 특성 해석)

  • 백수현;김필수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.206-215
    • /
    • 1994
  • A method for simulating general characteristics and temperature characteristics of discharging SCR of the capacitor discharge impulse magnetizer-magnetizing fixture system using SPICE is presented. This method has been developed which can aid the design, understanding and inexpensive, time-saving of magnetizing circuit. As the detailed characteristic of magnetizing circuit can be obtained, the efficient design of the magntizing circuit which produce desired magnet will be possible using our SPICE modeling. Especially, computation of the temperature rise of discharging SCR is very important since it gives some indication of thermal characteristic of discharging circuit. It is implemented on a 486 personal computer, and the modeling results are checked against experimental measures. The experimental results have been achived using 305[V] and 607[V] charging voltage, low-energy capacitor discharge impulse magnetizer-magnetizing fixture of air cleaner DC motor.

  • PDF

Study in Magnetizing the NdFeB Magnet which is inserted in a Squirrel Cage Rotor (영구자석 매입형 유도성 기동 동기전동기의 조립후 착자에 대한 연구)

  • Lee, C.G.;Kwon, B.I.;Woo, K.I.;Han, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.27-29
    • /
    • 2001
  • In this paper, we study in magnetizing the NdFeB magnet which is inserted in a squirrel cage rotor. The inserted NdFeB magnet need much more magnetizing flux than that of ferrite magnet. Also the eddy current flowing in rotor bar disturbs the magnetizer in magnetizing the NdFeB magnet. The existing magnetizing yoke is designed by increasing the coil turn. But we recognize that only by increasing the coil turn it is impossible to make NdFeB magnet magnetized fully. Hence, in this paper we propose the method of increasing magnetizing flux by reducing the rotor bar area.

  • PDF

Iron Core Effects on Maximum Temperature Rise of Superconducting Transformer during Quench (퀜치시 초전도 변압기의 최대온도에 철심이 미치는 영향)

  • Nah, Wan-Soo;Joo, Jin-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.1
    • /
    • pp.7-12
    • /
    • 1999
  • In this paper, the analytical results on the maximum temperature rise estimation, taking account of the magnetizing current, are presented. Magnetizing current effects are considered for the maximum temperature rise estimation during quenches. By introducing the first order model of the infinite solenoids, we calculate the magnetizing and leakage inductances of the coaxial-wound-superconducting transformers. As the permeability of the transformer core increases, so does the magnetizing inductance, while the leakage inductances and the magnetizing current of the transformer go down. These varying permeability effects on maximum temperature rise estimation is applied to the superconducting transformers, of which specifications have already been published. The calculated results showed sufficient margins to the thermal damage.

  • PDF