• Title/Summary/Keyword: Magnetization current

Search Result 249, Processing Time 0.023 seconds

Modified Current Differential Relay for $Y-{\Delta}$ Transformer Protection ($Y-{\Delta}$ 변압기 보호용 수정 전류차동 계전기)

  • Jin, En-Shu;Kang, Yong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.95-101
    • /
    • 2006
  • This paper proposes a modified current differential relay for $Y-{\Delta}$ transformer protection. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. A method to estimate the circulating component of the delta winding current is proposed. To cope with the remanent flux, before saturation, the core-loss current is calculated and used to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Test results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation, because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay does not require additional restraining signal and thus cause time delay of the relay.

Modified Current Differential Relay for Y-$\Delta$ Transformer Protection (Y-$\Delta$ 변압기 보호용 수정 전류차동 계전기)

  • Kang, Yong-Cheol;Jin, En-Shu;Lee, Byung-Eun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.9-13
    • /
    • 2004
  • This paper proposes a modified current differential relay for Y-$\Delta$ transformer protection. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. A method to estimate the circulating component of the delta winding current is proposed. To cope with the remanent flux, before saturation, the core-loss current is calculated and used to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Test results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation because the exciting current was successfully compensated. The relay correctly discriminates magnetic inrush and over-excitation from an internal fault and is not affected by the level of remanent flux.

  • PDF

Magnetizing Analysis of a Convergence Purity Magnet using Preisach model and Finite Element Method (프라이자흐 모델과 유한요소법을 이용한 C.P.M의 착자 특성 해석)

  • Yoon, Tae-Ho;Kwon, Byung-Il;Park, Seung-Chan;Woo, Kyung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.11
    • /
    • pp.729-736
    • /
    • 2000
  • This paper deals with the characteristic analysis of magnetizer for convergence purity magnet by the finite element method. The analysis utilizes combined method of the time-stepped finite element analysis and the Preisach model with hysteresis phenomena. In the finite element analysis, the non-linearity and the eddy current of the magnetizing fixure and permanent-magnet are taken account. The magnetization distribution in the permanent magnet is determined by using Preisach model which are composed of Everett function table and the first order transition curves is obtained by the Vibrating Sample Magnetometer. The calculated flux density values on the surface of the permanent magnet are led to the approximated gauss density values measured by the gauss meter. As a result, winding current, copper loss, eddy current loss of the magnetizing yoke, flux plot, surface gauss plot, temperature rise of the coil and resistor variation, vector diagram of magnetization distribution are shown.

  • PDF

PM Magnetization Characteristics Analysis of a Post-Assembly Line Start Permanent Magnet Motor using coupled Preisach Modeling and Finite Element Method (프라이자흐 모델링과 유한요소법을 이용한 라인 스타트 영구자석 전동기의 영구자석 자화 특성 분석)

  • Rha, Young-Gak;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.469-475
    • /
    • 2014
  • This paper deals with the characteristics evaluations of PM magnetization using stator coil in a Post-Assembly Line Start Permanent Magnet Motor (LSPMM) using a coupled Finite Element Method (FEM) and Preisach modeling, which is presented to analyze the magnetic characteristics of permanent magnets. The focus of this paper is the characteristics analysis relative to magnetizing direction and quantity of permanent magnets due to the eddy current occurring in the rotor bar during magnetization of Nd-Fe-B.

Influence of end-joint methods on magnetization loss in striated helical conductors

  • Kim, Woo-Seok;Kim, Yungil;Choi, Kyeongdal;Lee, Ji-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.39-43
    • /
    • 2013
  • To reduce the magnetization loss of a coated conductor, the striation and the transposition have to be accomplished for magnetic decoupling. The loss reduction effect in incomplete as well as complete striated YBCO CCs was reported in previous research. At the case of the incomplete striated sample, the end region of the sample is non-striated. So, it is not jointed with each other. In power applications, the joint is needed because current leads must be connected with HTS coils. In this research, the influence of end-joint methods with copper and superconducting joint on magnetization loss in striated YBCO CC and spiral winding samples are presented and compared with non-striated measured result.

A Study on the Effect of the Magnetization Direction on the Iron Loss Characteristics in Brushless DC Motors

  • Jung, Jin-Woo;Kim, Tae-Heoung
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.40-44
    • /
    • 2010
  • This paper introduces two types of magnetization, and reports the effect of the magnetization direction on the iron loss in a brushless DC (BLDC) motor using a 2-D time-stepped voltage source finite-element method (FEM). The iron losses were found to consist of hysteresis and eddy current loss, which were calculated from the time variation of the magnetic field distribution. To confirm the analysis, a prototype BLDC motor was constructed with a sintered ferrite magnet. The analysis and experimental results suggest that the magnetization direction has a significant effect in terms of the iron loss characteristics of the BLDC motor.

Comparison of Magnetization loss of YBCO wires and BSCCO Wires

  • Lim Hyoung-Woo;Lee Hee-Joon;Cha Guee-Soo;Lee Ji-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.33-36
    • /
    • 2006
  • Multi-stacked HTS wires are needed to conduct large current in the power application. In this paper, magnetization losses of the multi-stacked YBCO wire and the BSCCO wire have been measured and compared. 4 types of YBCO wires and BSCCO wires, that is, single, 2-stacked, 3-stacked and 4-stacked, have been tested. HTS multi-stacked wires were fabricated using face-to-face type stacking method. Measurements of magnetization loss were performed under various angles of external magnetic field to consider the anisotropic characteristics of HTS wires. The ratios of the magnetization loss by multiple stacking of superconducting wires were presented. Measurements results show that loss reduction ratios have three distinct regions due to the magnitude of external magnetic field, the material of HTS wire and number of stacks.

A Modified Current Differential Relaying Algorithm for Transformer Protection Considered by a Remanent Flux (잔류자속을 고려한 변압기 보호용 수정 전류차동 계전방식)

  • Kang, Y.C.;Jin, E.S.;Won, S.H.;Lim, U.J.;Kang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.262-265
    • /
    • 2003
  • During magnetic inrush or over-excitation saturation of the core in a transformer draws a large exciting current. This can cause mal-operation of a differential relay. This paper proposes a modified current differential relay for transformer protection. In order to cope with the remanent flux at the beginning. the start of saturation of the core is detected and the core flux at the instant is estimated by inserting the differential current into a magnetization curve. Then, this core flux value can be used to calculate the core flux. The proposed relay calculates the core-loss current from the induced voltage and the core-loss resistance; the relay calculates the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss current and the magnetizing current from the conventional differential current. The proposed technique not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the speed of the conventional relay.

  • PDF

Test result of striated HTS compact cables for low AC loss

  • Kim, Y.;Kim, W.S.;Lee, J.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.44-47
    • /
    • 2013
  • Large AC loss from the second generation (2G) high temperature superconducting (HTS) wires has been one of the major bottlenecks in power applications with HTS materials. Moreover, the large power applications also require the large current capacity from the HTS wires, which makes them produce larger AC losses. In order to reduce the AC loss from the HTS conductors with large current capacity, an HTS compact cable with some striations on the superconducting layers has been proposed. In this paper, we prepared some sample HTS compact conductors with striations, and measured their magnetization loss from the external magnetic field. We also made some slits on the superconducting layer of the HTS wire by laser cutting to reduce the aspect ratio of the superconducting layers. It would make the low eddy current loss and magnetic decoupling. Finally, the magnetization losses of the sample HTS compact conductors were measured and analyzed.

Voltage Source Finite Element Analysis of Electrical Machines Considering Hysteresis Characteristics (히스테리시스를 고려한 전기기기의 전압원 유한요소 해석)

  • Lee, Seok-Hee;Kim, Hong-Kyu;Jung, Hyun-Kyo;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.203-205
    • /
    • 1999
  • In this paper, voltage source FEA considering magnetic hysteresis characteristics is presented. Magnetization dependent model is used as a hysteresis model. The unknowns in finite element equation are the magnetic vector potential and current. Core model is analyzed and current waveform is compared with the experimental one. It is found that current can be accurately predicted with the voltage variation.

  • PDF