• Title/Summary/Keyword: Magnetites

Search Result 12, Processing Time 0.031 seconds

Fabrication of Double-Doped Magnetic Silica Nanospheres and Deposition of Thin Gold Layer

  • Park, Sang-Eun;Lee, Jea-Won;Haam, Seung-Joo;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.869-872
    • /
    • 2009
  • Double-doped magnetic particles that incorporated magnetites into both the surface and inside the silica cores were fabricated via the sol-gel reaction of citrate-stabilized magnetites with silicon alkoxide. Double-doped magnetic particles were easily fabricated and exhibited an higher magnetism in comparison to the singledoped magnetic particles that were prepared by the erosion of surface-deposited magneties from double-doped magentic particles. Thin gold layer was formed over magnetic silica nanospheres via nanoseed-mediated growth of gold clusters. The plasmon-derived absorption bands of double-doped magnetic silica-gold nanoshells were more broadened and shifted down by ca. 20 nm as compared to those of single-doped magnetic silicagold nanoshells, which were attributed to not only the surface scattering of incident light due to relatively rough surafce morphology, but also heterogeneous permittivity of dielectric cores due to surface-deposited magnetites.

Microbial Synthesis of Cobalt-Substituted Magnetite Nanoparticles by Iron Reducing Bacteria (미생물을 이용한 나노입자의 코발트로 치환된 자철석의 합성)

  • Yul Roh;Hi-Soo Moon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.111-118
    • /
    • 2001
  • The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. Cobalt-substituted magnetite nanoparticles were synthesized by a thermophilic iron(III)-reducing bacterium, TOR-39, under anaerobic conditions using amorphous Fe(III) oxyhydroxides plus cobalt ( $Co^{2+}$ and $Co^{3+}$ ) as an electron acceptor and organic carbon as an electron donor. Microbial processes produced copious amounts of nm-sized cobalt substituted magnetites. Chemical analysis and X-ray powder diffraction analysis showed that cobalt was substituted into biologically facilitated magnetites. Microbially facilitated synthesis of the cobalt-substituted magnetites may expand the possible use of the specialized ferromagnetic particles.

  • PDF

Superparamagnetic Gd- and Mn-substituted Magnetite Fluids Applied as MRI Contrast Agents

  • Kim, Jong-Hee;Lee, Chang-Hyun;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1305-1308
    • /
    • 2009
  • The experimental particle samples included ($Mn_{0.1}Fe_{0.9}$)O-$Fe_2O_3$ and FeO-($Gd_{0.1}Fe_{0.9}$)$_2O_3$ with $Mn^{2+}\;and\;Gd^{3+}$ substitutions in inverse spinel $Fe_3O_4$. A lecithin surfactant was adsorbed onto the magnetic particles by ultrasonication. The samples prepared showed excellent dispersibility at the mean size of 13 nm; their saturation magnetization values were 63 emu/g for the bare and Mn-substituted magnetites, and 56 emu/g for the Gd-substituted magnetite. The crystal structure of the substituted magnetites was very similar to that of the bare magnetite, due to a small amount of 0.1 mole fraction substituted in synthesizing the magnetite. The magnetite fluids, according to T2-weighted MR images, effectively diminished the signal intensity in the liver and spleen of Sprague-Dawley rats.

Serpentinization of Olivine and Pyroxene in Chungnam Serpentinites, Korea (충남지역 사문암내 감람석과 휘석의 사문석화작용)

  • Kim Young-Tae;Woo Young-Kyun
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.297-304
    • /
    • 2005
  • Serpentinites in Chungnam area are mainly composed of serpentines. Serpentines of olivine origin consist of pseudomorphs of olivines and show mesh textureen closed with magnetites along the boundaries of serpentine crystals. In some serpentinites, serpentinization is occurred in crystal boundaries and/or cracks of olivines and pyroxenes which are relict minerals of dunite and harzburgite. On the process from olivine to serpentine, Mg ions are greatly decreased and Si ions are greatly increased, and $Fe^{2+}\;and\;Fe^{3+}$ ions are a little decreased. But, on the process from pyroxene to serpentine, Si ions are greatly decreased and Mg ions are greatly increased. Magnetites around the serpentine crystals were formed from the iron which had been left out through this serpentinization process of olivine. Serpentinization from the original rocks such as dunite and harzburgite in Chungnam area was occurred by various waters affected after formation of original rock, and particularly by metamorphic water in the metamorphic conditions ranging from green schist facies to granulite facies through amphibolite facies.

Microstructure, Electrical Property and Nonstoichiometry of Light Enhanced Plating(LEP) Ferrite Film

  • 김 돈;이충섭;김영일
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.533-539
    • /
    • 1998
  • A magnetic film was deposited on a slide glass substrate from aqueous solutions of $FeCl_2$ and $NaNO_2$ at 363 K. XRD analysis showed that the film was polycrystalline magnetite $(Fe_{3(1-{\sigma})}O_4)$ without impurity phase. The lattice constant was 0.8390 nm. Mossbauer spectrum of the film could be deconvoluted by the following parameters: isomer shifts for tetrahedral $(T_d)$ and octahedral $(O_h)$ sites are 0.28 and 0.68 mm/s, respectively, and corresponding magnetic hyperfine fields are 490 and 458 kOe, respectively. The estimated chemical formula of the film by the peak intensity of Mossbauer spectrum was $Fe_{2.95}O_4$. Low temperature transition of the magnetite (Verwey transition) was not detected in resistivity measurement of the film. Properties of the film were discussed with those of pressed pellet and single crystal of synthetic magnetites. On the surface of the film, magnetite particles of about 0.2 μm in diameter were identified by noncontact atomic force microscopy (NAFM) and magnetic force microscopy (MFM).

Survey on electrocoagulation to purify contaminated water (전기응고법을 이용한 오염 수 정화)

  • Kim, W.Y.;Park, K.S.;Oh, C.S.
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.17-20
    • /
    • 2014
  • A magnetic fluid separation technology was confirmed to be very effective to remove the suspended solids from contaminated water. We have surveyed on the effects of operating variables on the characteristics of suspended solids(SS) removal investigated through the test runs using magnetic powder. Magnetic flocculation here formed by adsorbing fine magnetites on the surface of suspended solid was observed. The strength of magnet was of significance in determining the SS removal efficiency.

Surface Modification of Magnetites Using Maltotrionic Acid and Folic Acid for Molecular Imaging

  • Selim, K.M.Kamruzzaman;Lee, Joo-Hee;Kim, Sun-Jung;Xing, Zhicai;Kang, Inn-Kyu;Chang, Yong-Min;Guo, Haiqing
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.646-653
    • /
    • 2006
  • Highly hydrophilic, uniform, superparamagnetic and nontoxic maltotrionic acid (MA)-coated magnetite nano-particles (MAM) were prepared and characterized by TEM, DLS, XRD and VSM. MA was used to improve the biocompatibility, monodispersity and non-specific intracellular uptake of nanoparticles. Folic acid (FA) was subsequently conjugated to the MAM to preferentially target KB cells (cancer cells) that have folate receptors expressed on their surfaces and to facilitate nanoparticles in their transit across the cell membrane. Finally, fluorescence isothiocyanate (FITC) was added to the nanoparticles to visualize the nanoparticle internalization into KB cells. After the cells were cultured in a media containing the MAM and MAM-folate conjugate (FAMAM), the results of fluorescence and confocal microscopy showed that both types of nanoparticles were internalized into the cells. Nevertheless, the amount of FAMAM uptake was higher than that of MAM. This result indicated that nanoparticles modified with MA and FA could be used to facilitate the nanoparticle uptake to specific KB cells (cancer cells) for molecular imaging.

Preliminary Tests of Mortars Containing Magnetite as Fine Aggregate (자철석 혼입 모르터의 기초물성 연구)

  • Yoon, Sang Chun;Yang, Sung Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.82-88
    • /
    • 2013
  • In this project a preliminary experimental research work was done to apply mortars containing magnetite as fine aggregates unto floor finishing materials in order to make indoor environment eco-friendly and to have noiseproof control between floors. Crushed magnetites were substituted as sands in the mix design with a range of 0, 20, 40, 60, 100%. First far-infrared radiation tests to determine emissivity and emission power were done in accordance with the KICM test standard and an outstanding result was obtained. Density and compressive strength test results also showed that as the substitution increases, test values increase in a linear trend. However dry shrinkage test results revealed that as the substitution increases, shrinkage strain also increases. To clearly seek a solution about this problem, more experimental works should be done on oncoming experimental program.

Magnetic Properties of Magnetites at Low Temperatures (자철석의 저온 자화특성)

  • Hong, Hoa-Bin;Yu, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • Magnetic properties at low-temperatures can diagnose the presence of certain magnetic minerals in rocks. At the Verwey transition temperature ($T_v$, ~105~120 K), magnetite transforms from monoclinic to cubic structure as the temperature increases. At the isotropic point ($T_i$, ~135 K), magnetocrystalline anisotropic constant of magnetite passes through zero (from negative to positive) as the temperature decreases so that its optimal remanence acquisition axis changes from [111] to [001]. A sharp remanence drop was observed at $T_v$ during warming of LTSIRM (low-temperature saturation isothermal remanent magnetization). For cooling of RTSIRM (room-temperature saturation isothermal remanent magnetization), the remanence decreased on passing $T_i$ and $T_v$. On warming of RTSIRM, remanence recovery becomes more prominent as the average grain size of magnetite increases. In summary, the SIRM memory decreases with increasing grain size of magnetite. A similar, but rather gradual, remanence transition occurs for natural samples due to contribution of cations other than Fe. As a non-destructive tool, low-temperature magnetic behavior is sensitive to unravel the magnetic remanence carriers in terrestrial rocks or meteorites.

Determination of Rock Cleavages Using AMS (Anisotropy of Magnetic Susceptibility): a Case Study on the Geochang Granite Stone, Korea (대자율이방성(AMS) 분석을 통한 석재 결의 파악: 거창 화강석에서의 사례 연구)

  • Cho, Hyeongseong;Kim, Jong-Sun;Kim, Kun-Ki;Kang, Moo-Hwan;Sohn, Young Kwan;Lee, Youn Soo;Jwa, Yong-Joo;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.209-231
    • /
    • 2015
  • In granite quarry, stones are generally quarried along easily separating planes called as 'rock cleavage'. Because orientation and characteristics of the rock cleavage are directly involved with easy quarrying, it is the most important factor on selecting a direction of digging. Using AMS (anisotropy of magnetic susceptibility), we attempt to interpret rock fabrics in Geochang Granite Stone (JS, SD, AR, GD, BW, MD quarry) and discuss about determination of rock cleavages and correlation between the rock fabrics and cleavages. Based on mean susceptibility, thermo-susceptibility curves, and hysteresis parameters, Ti-poor MD and/or PSD magnetites are the main contributor to AMS of the granite stones. The systematic magnetic foliations with sub-vertical dip angle are developed in the whole granite quarries. In most of the granite quarries, the magnetic foliations are significantly consistent with grain plane. In the BW quarry, which has higher $P_J$ values than the others, the magnetic foliations coincide exceptionally with rift plane. These results suggest that rock cleavages in granite stone are related to rock fabrics meaning shape and spatial arrangement of crystals. Magnetic fabrics analysis using AMS method, therefore, can be a quantitative and effective tool for determination of rock cleavages in granite quarry.