• Title/Summary/Keyword: Magnetite($Fe_3O_4$)

Search Result 168, Processing Time 0.031 seconds

Quantitative analysis of iron ore sinter by X-ray powder diffraction method (X-선 분말 회절법을 이용한 소결광 구성광물상의 정량분석)

  • 김덕남;김형순
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.264-270
    • /
    • 2000
  • Quantitative analysis of iron ore sinter consisting of hematite, magnetite, calcium ferrite and slag was investigated by X-ray internal standard method. After selecting NaF and $SiO_2$as internal standard materials, the calibration curves were determined and were applied to quantitative analysis of the internal standard method. Calcium ferrite was identified as a solid solution of CaO.$2Fe_2$$O_3$with 7 wt% and 3 wt% solubility of $AI_2$$O_3$and $SiO_2$, respectively. The maximum deviation of quantitative analysis of synthetic iron ore was about $\pm$5 wt%. The contents of each mineral calculated in industrial sinter were 27~40 wt% of hematite, 20~30 wt% of magnetite, 22~33 wt% of calcium ferrite and 10~20 wt% of slag.

  • PDF

Charge Transformation of CU-ions in CuxFe3-xO4 (χ=0.1, 0.2)

  • Lee, Choong Sub;Lee, Chan Young;Kwon, Dong Wook
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.25-28
    • /
    • 2002
  • Slowly cooled $Cu_xFe_{3-x}O_4$ ($\chi$=0.1, 0.2) have been investigated over a temperature range from 82 to 700 K using the M$\ddot{o}$ssbauer technique. X-ray diffraction shows that these have a single-phase cubic spinel structure of lattice parameters $\alpha$=8.396 and 8.398${\AA}$, respectively. Since Cu ions prefer B (octahedral) sites to A (tetrahedral) sites, the ionic distribution is $(Fe)_A[Fe_{2-x}Cu_x]_BO_4$. M$\ddot{o}$ssbauer spectra consisted of two sets of 6-line pattern from. A site in ferric state and B site in ferrous-ferric state. Intensity ratio of B to A subspectra is 1.0 at 82 K and increases to 2.0 at 700 K with increasing temperature. After annealing the samples under vacuum at $450^circ{C}$ for a half hour, x-ray diffraction patterns have the peaks of magnetite- and hematite-phase. Lattice constants of magnetite-phase are 8.395 and 8.392 ${\AA}$ smaller than 8.396 and 8.398 ${\AA}$ before annealing, respectively. M$\ddot{o}$ssbauer spectra reveal the conventional magnetite pattern with the additional hematite pattern. Intensity ratios of B to A subspectra fur magnetite-phase become 1.9-2.0 over all temperature ranges and Cu ions are distributed over A and B sites randomly. Ratios of hematite to total intensity in M$\ddot{o}$ssbauer spectra for $\chi$= 0.1 and $\chi$= 0.2 are 10 and 21%, respectively. These hematite ratios may be due to annealing under vacuum at $450^circ{C}$, which transforms $Cu^{2+}$ ionic states into $Cu^{1+}$. Verwey temperatures far $\chi$= 0.1 and $\chi$= 0.2 are $123\pm2$ K and $128\pm2$ K.

Effects of Heat Treatment Conditions of FeC2O4·2H2O on the Formation of Fe3O4-δ (FeC2O4·2H2O의 열처리 조건이 Fe3O4-δ 형성에 미치는 영향)

  • Oh, Kyoung-Hwan;Park, Won-Shik;Rhee, Sang-In;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.620-625
    • /
    • 2012
  • A general synthetic method to make $Fe_3O_{4-{\delta}}$ (activated magnetite) is the reduction of $Fe_3O_4$ by $H_2$ atmosphere. However, this process has an explosion risk. Therefore, we studied the process of synthesis of $Fe_3O_{4-{\delta}}$ depending on heat-treatment conditions using $FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. The thermal decomposition characteristics of $FeC_2O_4{\cdot}2H_2O$ and the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ were analyzed with TG/DTA in Ar atmosphere. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method using $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$. The concentration of the solution was 0.1 M and the equivalent ratio was 1.0. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed to $H_2O$ and $FeC_2O$4 from $150^{\circ}C$ to $200^{\circ}C$. $FeC_2O4$ was decomposed to CO, $CO_2$, and $Fe_3O_4$ from $200^{\circ}C$ to $250^{\circ}C$. Single phase $Fe_3O_4$ was formed by the decomposition of ${\beta}-FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. However, $Fe_3C$, Fe and $Fe_4N$ were formed as minor phases when ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed in $N_2$ atmosphere. Then, $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by decomposion of CO. The reduction of $Fe_3O_4$ to $Fe_3O_{4-{\delta}}$ progressed from $320^{\circ}C$ to $400^{\circ}C$; the reaction was exothermic. The degree of exothermal reaction was varied with heat treatment temperature, heating rate, Ar flow rate, and holding time. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was greatly influenced by the heat treatment temperature and the heating rate. However, Ar flow rate and holding time had a minor effect on ${\delta}$-value.

Corrosion Protection Properties of Co3O4 and CoFe2O4 Nanoparticles for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloys

  • Thu Thuy Thai;Anh Truc Trinh;Thi Thanh Tam Pham;Hoan Nguyen Xuan
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.90-98
    • /
    • 2023
  • In this study, cobalt oxide (Co3O4) and cobalt-doped magnetite (CoFe2O4) nanoparticles were synthesized by a hydrothermal method. They were then used as corrosion inhibitors for corrosion protection of AA2024-T3 aluminum alloys. These obtained nanoparticles were characterized by x-ray diffraction, field-emission scanning electron microscopy, and Zeta potential measurements. Corrosion inhibition activities of Co3O4 and CoFe2O4 nanoparticles were determined by performing electrochemical measurements for bare AA2024-T3 aluminum alloys in 0.05 M NaCl + 0.1 M Na2SO4 solution containing Co3O4 or CoFe2O4 nanoparticles. Corrosion protection for AA2024-T3 aluminum alloys by a water-based epoxy with or without the synthesized Co3O4 or CoFe2O4 nanoparticles was investigated by electrochemical impedance spectroscopy during immersion in 0.1 M NaCl solution. The corrosion protection of epoxy coating deposited on the AA2024-T3 surface was improved by incorporating Co3O4 or CoFe2O4 nanoparticles in the coating. The corrosion protection performance of the epoxy coating containing CoFe2O4 was higher than that of the epoxy coating containing Co3O4.

The Effect of Iron Oxides $(Fe_2O_3,\;Fe_3O_4)$ on Tribological Characteristics of Automotive Friction Materials (자동차용 마찰재에서 철산화물이 마찰특성에 미치는 영향에 관한 연구)

  • Cho KeunHyung;Jang Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.289-295
    • /
    • 2004
  • The relationship between friction characteristics and iron oxides at the sliding interface was investigated. Three friction materials containing iron, magnetite $(Fe_3O_4)$ or hematite $(Fe_2O_3)$ were manufactured and friction tests were performed on gray cast iron disks to evaluate the friction coefficient as a function of sliding speed $\mu-\nu$. In-situ noise spectrum analyzer was employed to compare noise propensity during friction tests. Results show that the specimens with magnetite are more sensitive to velocity than those with iron or hematite. The specimens containing magnetite and hematite generated noise with different peaks in the spectrum. The difference in the peak frequency seems attributed to the different surface aggressiveness of iron oxides and intermittent changes of real contact area at the sliding interface during sliding. Surface morphology and roughness of the counter disc after the tests are also consistent with the aggressiveness of iron oxides.

  • PDF

Effect on the Formation of Fe3O4 with Ferrous Sulfate/Ferric Sulfate Molar Ratio (Fe3O4 생성에 미치는 황산제일철/황산제이철 몰비의 영향)

  • Eom, Tae-Hyoung;Tuan, Huynh Thanh;Kim, Sam-Joong;An, Suk-Jin;Oh, Kyoung-Hwan;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.225-231
    • /
    • 2011
  • The effect of ferrous/ferric molar ratio on the formation of nano-sized magnetite particles was investigated by a co-precipitation method. Ferrous sulfate and ferric sulfate were used as iron sources and sodium hydroxide was used as a precipitant. In this experiment, the variables were the ferrous/ferric molar ratio (1.0, 1.25, 2.5 and 5.0) and the equivalent ratio (0.10, 0.25, 0.50, 0.75, 1.0, 2.0 and 3.0), while the reaction temperature ($25^{\circ}C$) and reaction time (30 min.) were fixed. Argon gas was flowed during the reactions to prevent the $Fe^{2+}$ from oxidizing in the air. Single-phase magnetite was synthesized when the equivalent ratio was above 2.0 with the ferrous/ferric molar ratios. However, goethite and magnetite were synthesized when the equivalent ratio was 1.0. The crystallinity of magnetite increased as the equivalent ratio increased up to 3.0. The crystallite size (5.6 to 11.6 nm), median particle size (15.4 to 19.5 nm), and saturation magnetization (43 to 71 $emu.g^{-1}$) changed depending on the ferrous/ferric molar ratio. The highest saturation magnetization (71 $emu.g^{-1}$) was obtained when the equivalent ratio was 3.0 and the ferrous/ferric molar ratio was 2.5.

Cyclic process for the preparation of synthetic rutile and pure iron oxide from the domestic titaniferous magnetite ore (국내 부존의 함티탄자철광으로 부터 합성 rutile 및 고순도 철화산화물의 제조를 위한 순환 공정)

  • Lee, Chul-Tae;Ryoo, Young-Hong
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.372-384
    • /
    • 1991
  • The sulfation of the domestic titaniferous magnetite ore with ammonium sulfate was investigated to find a cyclic process for the production of synthetic rutile and high purity iron oxide and to test the feasibility of ammonium sulfate being an alternative sulfation agent. The proper sulfation conditions were determined to be a temperature of $425^{\circ}C$, 2.5 hours of reaction time, the weight ratio of ammonium sulfate to titaniferous magnetite : 11, and particle size or titaniferous magnetite : -250 mesh. 90.4 % of $TiO_2$ and 85.3 % of iron were extracted from the titaniferous magnetite sulfated under these conditions by the water leaching. From the leachate $TiO_2$ of 93.8 % purity as a mixture of rutile and anatase and ${\alpha}-Fe_2O_3$ of 97.6 % purity were obtained.

  • PDF

Microstructure, Electrical Property and Nonstoichiometry of Light Enhanced Plating(LEP) Ferrite Film

  • 김 돈;이충섭;김영일
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.533-539
    • /
    • 1998
  • A magnetic film was deposited on a slide glass substrate from aqueous solutions of $FeCl_2$ and $NaNO_2$ at 363 K. XRD analysis showed that the film was polycrystalline magnetite $(Fe_{3(1-{\sigma})}O_4)$ without impurity phase. The lattice constant was 0.8390 nm. Mossbauer spectrum of the film could be deconvoluted by the following parameters: isomer shifts for tetrahedral $(T_d)$ and octahedral $(O_h)$ sites are 0.28 and 0.68 mm/s, respectively, and corresponding magnetic hyperfine fields are 490 and 458 kOe, respectively. The estimated chemical formula of the film by the peak intensity of Mossbauer spectrum was $Fe_{2.95}O_4$. Low temperature transition of the magnetite (Verwey transition) was not detected in resistivity measurement of the film. Properties of the film were discussed with those of pressed pellet and single crystal of synthetic magnetites. On the surface of the film, magnetite particles of about 0.2 μm in diameter were identified by noncontact atomic force microscopy (NAFM) and magnetic force microscopy (MFM).

Room Temperature Growth of Magnetite Films on Arachic Acid Monomolecular Layers

  • Ishihara, Takashi;Kitamoto, Yoshitaka;Shirasaki, Fumio;Abe, Masanori
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.401-404
    • /
    • 2000
  • Mimicking the bacterial synthesis of magnetosomes, in which the functionalized surface of a cytoplasmic (lipid) membrane is considered to be stimulating the crystal growth of magnetite, we have successfully grown magnetite films at $30^{\circ}C$ using an arachic acid monomolecular layer as a functionalized surface. The lipid monomolecular layer was spread on an aqueous solution of FeCl$_2$ which was oxidized by flowing a mixed gas, with ratio $O_2$/$N_2$=1/2000, on the surface of the lipid layer. Mossbauer and X-ray diffraction analyses revealed that the Fe$_3$O$_4$ films contain small amounts of ferric hydroxyl impurity phases of ${\alpha}$-FeOOH and ${\tau}$-FeOOH. This is because the oxygen partial pressure at the ferrite/aqueous interface changed as the film (through which the gas penetrated) increased in thickness. Methods to obtain single phase magnetite films are proposed.

  • PDF

Decomposition Characteristics of Carbon Dioxide Using Magnetite and Inorganic Sludge (Magnetite와 무기성 슬러지의 이산화탄소 분해 특성)

  • Park, Joon-Seok;Jeon, Jea-Yeoul;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.344-352
    • /
    • 2010
  • Magnetite and inorganic sludge were mainly composed of $Fe_2O_4$ and $Fe_2O_3$, respectively. Initial specific surface areas of magnetite and inorganic sludge were 130 $m^2$/g and 31.7 $m^2$/g. $CO_2$ decomposition rate for inorganic sludge was increased with temperature. Maximum $CO_2$ decomposition rates were shown 89% for magnetite at $350^{\circ}C$ and 84% for inorganic sludge at $500^{\circ}C$. Specific surface area for magnetite was not varied significantly after $CO_2$ decomposition. However, specific surface area for inorganic sludge was greatly decreased from initial 130 $m^2$/g to approximately 50~60 $m^2$/g after reaction. Therefore, it was estimated that magnetite could be used for $CO_2$decomposition for a long time and inorganic sludge should be wasted after $CO_2$ decomposition reaction.