DOI QR코드

DOI QR Code

Charge Transformation of CU-ions in CuxFe3-xO4 (χ=0.1, 0.2)

  • 발행 : 2002.06.01

초록

Slowly cooled $Cu_xFe_{3-x}O_4$ ($\chi$=0.1, 0.2) have been investigated over a temperature range from 82 to 700 K using the M$\ddot{o}$ssbauer technique. X-ray diffraction shows that these have a single-phase cubic spinel structure of lattice parameters $\alpha$=8.396 and 8.398${\AA}$, respectively. Since Cu ions prefer B (octahedral) sites to A (tetrahedral) sites, the ionic distribution is $(Fe)_A[Fe_{2-x}Cu_x]_BO_4$. M$\ddot{o}$ssbauer spectra consisted of two sets of 6-line pattern from. A site in ferric state and B site in ferrous-ferric state. Intensity ratio of B to A subspectra is 1.0 at 82 K and increases to 2.0 at 700 K with increasing temperature. After annealing the samples under vacuum at $450^circ{C}$ for a half hour, x-ray diffraction patterns have the peaks of magnetite- and hematite-phase. Lattice constants of magnetite-phase are 8.395 and 8.392 ${\AA}$ smaller than 8.396 and 8.398 ${\AA}$ before annealing, respectively. M$\ddot{o}$ssbauer spectra reveal the conventional magnetite pattern with the additional hematite pattern. Intensity ratios of B to A subspectra fur magnetite-phase become 1.9-2.0 over all temperature ranges and Cu ions are distributed over A and B sites randomly. Ratios of hematite to total intensity in M$\ddot{o}$ssbauer spectra for $\chi$= 0.1 and $\chi$= 0.2 are 10 and 21%, respectively. These hematite ratios may be due to annealing under vacuum at $450^circ{C}$, which transforms $Cu^{2+}$ ionic states into $Cu^{1+}$. Verwey temperatures far $\chi$= 0.1 and $\chi$= 0.2 are $123\pm2$ K and $128\pm2$ K.

키워드

참고문헌

  1. J. Appl. Phys. v.40 no.1402 J. Appl. Phys. E. J. W. Verway;P. W. Haayman Physica;G. A. Sawatzky;J. M. D. Coey;A. H. Morish https://doi.org/10.1016/S0031-8914(41)80005-6
  2. Phys. Rev. v.53 no.15113 Phys. Rev A. Kozlowski;P. Metcalf;Z. Kakol;J. M. Honig https://doi.org/10.1063/1.1657689
  3. Phys. Rev v.14 no.2956 Phys. Rev H. N. Ok;B. J. Evans https://doi.org/10.1103/PhysRevB.53.15113
  4. Proc. Phys. Soc. v.57 no.160 Proc. Phys. Soc. J. B. Nelson;D. P. Riley https://doi.org/10.1103/PhysRevB.14.2956
  5. J. Korean Mag. Soc v.7 no.232 J. Korean Mag. Soc C. S. Lee;C. Y. Lee
  6. Acta Crystallogr v.32 no.751 J. Korean Mag. Soc R. D. Shannon
  7. J. Chem. Phys v.75 no.3674 J. Chem. Phys M. Bhaduri https://doi.org/10.1107/S0567739476001551
  8. Solid State Commun v.72 no.977 Solid State Commun P. M. Persoons;E. De Grave https://doi.org/10.1063/1.442532
  9. J. Phys. Soc v.17 no.18358 J. Phys. Soc Y. Ishikawa https://doi.org/10.1016/0038-1098(89)90611-X
  10. World Science Publishing Co, Canted Antiferromagnetism: Hematite A. H. Morrish https://doi.org/10.1143/JPSJ.17.1835
  11. A. H. Morrish, Canted Antiferromagnetism: Hematite, World Science Publishing Co. (1994).

피인용 문헌

  1. Synthesis and Magnetorheological Characterization of Magnetite Nanoparticle and Poly(Vinyl Butyral) Composite vol.45, pp.6, 2009, https://doi.org/10.1109/TMAG.2009.2018612
  2. Fabrication of Carbonyl Iron Embedded Polycarbonate Composite Particles and Magnetorheological Characterization vol.45, pp.6, 2009, https://doi.org/10.1109/TMAG.2009.2018677