• 제목/요약/키워드: Magnetics modeling

검색결과 72건 처리시간 0.035초

특이치 분해 방법에 의한 함정 자기원 다이폴 모델링 방안 연구 (A Study on Dipole Modeling Method for Ship's Magnetic Anomaly using Singular Value Decomposition Technique)

  • 양창섭;정현주
    • 한국자기학회지
    • /
    • 제17권6호
    • /
    • pp.259-264
    • /
    • 2007
  • 본 논문에서는 모델 함정에 의해 발생하는 정 자기장 신호 특성을 수학적으로 모델링하는 방법에 대해 기술하고 있다. 특정 위치에 설치된 자기센서들에 의해 계측된 자기장 신호 값들로 부터 특이치 분해(singular value decomposition) 방법을 이용한 등가 자기원 다이폴 모델링 기법을 제안하였으며, 제안된 기법의 타당성은 비자성 자기실험실에서 측정된 자기장 값들과의 비교를 통해 성공적으로 검증되었다. 본 논문에서 제안된 기법은 모델 함정 뿐 만 아니라 실 함정에서의 다양한 심도 변화에 따른 정 자기장 신호 분포 특성 예측 시 직접 활용이 가능하다.

무전극등 시스템의 모델 및 시뮬레이션 연구 (Modeling and Simulation of an Electrodeless lamp system)

  • 한수빈;박석인;정봉만;정학근;김규덕;유승원
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2003년도 학술대회논문집
    • /
    • pp.237-239
    • /
    • 2003
  • Characteristics of electrodeless lamp as a load of the ballast is different compared to normal fluorescent lamp because the lamp includes the magnetics for inductive discharging process. So somewhat different modeling is necessary to make a proper power match between the lamp and ballast. Modeling of an electrodeless lamps, Endura of Osram, is presented in this paper. Simulation with a result of experiment is given for a verification of proposed model.

  • PDF

Modeling and Analysis of Drift Error in a MSSG with Double Spherical Envelope Surfaces

  • Xin, Chaojun;Cai, Yuanwen;Ren, Yuan;Fan, Yahong
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.356-363
    • /
    • 2016
  • To improve the sensing accuracy of the newly developed magnetically suspended sensitive gyroscope (MSSG), it is necessary to analyze the causes of drift error. This paper build the models of disturbing torques generated by stator assembly errors based on the geometric construction of the MSSG with double spherical envelope surfaces, and further reveals the generation mechanism of the drift error. Then the drift error from a single stator magnetic pole is calculated quantitatively with the established model, and the key factors producing the drift error are further discussed. It is proposed that the main approaches in reducing the drift error are guaranteeing the rotor envelope surface to be an ideal spherical and improving the controlling precision of rotor displacement. The common problems associated in a gyroscope with a spherical rotor can be effectively resolved by the proposed method.

A Equivalent Finite Element Model of Lamination for Design of Electromagnetic Engine Valve Actuator

  • Kim, Jin-Ho
    • Journal of Magnetics
    • /
    • 제11권4호
    • /
    • pp.151-155
    • /
    • 2006
  • The electromagnetic engine valve actuator is a key technology to achieve variable valve timing in internal combustion engine and the steel core and clapper of the electromagnetic engine valve actuator are laminated to reduce the eddy current loss. To design and characterize the performance of the electromagnetic engine valve actuator, FE (finite element) analysis is the most effective way, but FE (finite element) 3-D modeling of real lamination needs very fine meshes resulting in countless meshes for modeling and numerous computations. In this paper, the equivalent FE 2-D model of electromagnetic engine valve actuator is introduced and FE analysis is performed using the equivalent FE 2-D model.

Finite Element Study of Ferroresonance in single-phase Transformers Considering Magnetic Hysteresis

  • Beyranvand, Morteza Mikhak;Rezaeealam, Behrooz
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.196-202
    • /
    • 2017
  • The occurrence of ferroresonance in electrical systems including nonlinear inductors such as transformers will bring a lot of malicious damages. The intense ferromagnetic saturation of the iron core is the most influential factor in ferroresonance that makes nonsinusoidal current and voltage. So the nonlinear behavior modeling of the magnetic core is the most important challenge in the study of ferroresonance. In this paper, the ferroresonance phenomenon is investigated in a single phase transformer using the finite element method and considering the hysteresis loop. Jiles-Atherton (JA) inverse vector model is used for modeling the hysteresis loop, which provides the accurate nonlinear model of the transformer core. The steady-state analysis of ferroresonance is done while considering different capacitors in series with the no-load transformer. The accurate results from copper losses and iron losses are extracted as the most important specifications of transformers. The validity of the simulation results is confirmed by the corresponding experimental measurements.

Analysis, Modeling and Compensation of Dynamic Imbalance Error for a Magnetically Suspended Sensitive Gyroscope

  • Xin, Chaojun;Cai, Yuanwen;Ren, Yuan;Fan, Yahong;Xu, Guofeng;Lei, Xu
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.529-536
    • /
    • 2016
  • Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by dynamic imbalance, this paper proposes a novel compensation method based on analysis and modeling of the error for a MSSG. Firstly, the angular velocity measurement principle of the MSSG is described. Then the analytical model of dynamic imbalance error has been established by solving the complex coefficient differential dynamic equations of the rotor. The generation mechanism and changing regularity of the dynamic imbalance error have been revealed. Next, a compensation method is designed to compensate the dynamic imbalance error and improve the measurement accuracy of the MSSG. The common issues caused by dynamic imbalance can be effectively resolved by the proposed method in gyroscopes with a levitating rotor. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.