• Title/Summary/Keyword: Magnetic-circuit model

Search Result 262, Processing Time 0.024 seconds

Analysis and Modeling of Magnetic Characteristics in Surface-Mounted Permanent-Magnet Machines with Rotor Overhang

  • Yeo, Han-Kyeol;Woo, Dong-Kyun;Lim, Dong-Kuk;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.399-404
    • /
    • 2013
  • The rotor overhang is used to enhance air-gap flux and improve power density. Due to asymmetry in the axial direction caused by the overhang, the time consuming 3D analysis is necessary to design the motor with overhang. To solve this problem, this paper proposes the equivalent magnetic circuit model (EMCM) that can consider overhang effects without the 3D analysis by using effective air-gap length. The analysis time can be reduced significantly via the proposed EMCM. The reduction of the analysis time is essential for the preliminary design of the motor. In order to verify the proposed model, the 3-D finite-element method (FEM) analysis is adopted. 3-D FEM results confirm the validity of the proposed EMCM.

Magnetic-Field-Model and Circuit-Model Based Analysis of Three-Phase Magnetically Coupled Resonant Wireless Power Transfer Systems with Cylinder-Shaped Coils

  • Chen, Xuling;Fu, Xiewei;Jiang, Chong;Pei, Cunhui;Liu, Fuxin
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1154-1164
    • /
    • 2018
  • In single-phase magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the transfer characteristics, including the output power and transfer efficiency, are significantly influenced by the spatial scales of its coils. As a potential alternative, a three-phase MCR WPT system with cylinder-shaped coils that are excited in a voltage-fed manner has been proposed to satisfy the requirements of compact space. This system adopts a phase-shifted angle control scheme to generate a rotating magnetic field and to realize omnidirectional WPT that is immune to spatial scales. The magnetic field model and equivalent circuit models are built to holistically analyze the system characteristics under different angular misalignments. Research results show that the transfer characteristics can be improved by modulating the phase-shifted angle in each phase. Experiments have also been carried out to evaluate the accuracy of the theoretical analysis and to confirm the validity of the system modeling method.

Fundamental characteristic analysis on 6 T-class high-temperature superconducting no-insulation magnet using turn-distributed equivalent circuit model

  • Liu, Q.;Choia, J.;Sim, K.;Kim, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.44-48
    • /
    • 2021
  • In order to obtain ultra-high resolution MRI images, research and development of 11 T or higher superconducting magnets have been actively conducted in the world, recently. The high-temperature superconductor (HTS), first discovered in 1986, was very limited in industrial application until mid-2010, despite its high critical current characteristics in the high magnetic field compared to the low-temperature superconductor. This is because HTS magnets were unable to operate stably due to the thermal damage when a quench occurred. With the introduction of no-insulation (NI) HTS magnet winding technology that does not burn electrically, it could be expected that the HTS magnets are dramatically reduced in weight, volume, and cost. In this paper, a 6 T-class NI HTS magnet for basic characteristic analysis was designed, and a distributed equivalent circuit model of the NI coils was configured to analyze the charging current characteristics caused by excitation current, and the charge delay phenomenon and loss were predicted through the development of a simulation model. Additionally, the critical current of the NI HTS magnets was estimated, considering the magnetic field, its angle and temperature with a given current. The loss due to charging delay characteristics was analyzed and the result was shown. It is meaningful to obtain detailed operation technology to secure a stable operation protocol for a 6T NI HTS magnet which is actually manufactured.

The Short Circuit Analysis of a Simplified Magnetic Shielding Type High-Tc Superconducting Fault Current Limiter (단순화된 자기차폐형 고온초전도한류기 단락 특성 해석)

  • 이찬주;이승제;장미혜;현옥배;최효상;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.97-100
    • /
    • 1999
  • Nowadays the high-Tc Superconducting Fault current Limiter (SFCL) is one of the superconducting devices which are very closed to commercialization. The most popular model of High-Tc SFCL is a magnetic shielding type. A superconductor of magnetic shielding type SFCL can be stable in the superconducting state, because there is no contact between the superconductor and the normal conductor. But this model needs large place to set up and in a fault condition, mechanical vibrations may happen to damage the superconductor or total device. In this paper, to solve these problems, the simplified model of magnetic shielding type SFCL was introduced.

  • PDF

Design of Hybrid Magnetic Levitation System using Intellignet Optimization Algorithm (지능형 최적화 기법 이용한 하이브리드 자기부상 시스템의 설계)

  • Cho, Jae-Hoon;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1782-1791
    • /
    • 2017
  • In this paper, an optimal design of hybrid magnetic levitation(Maglev) system using intelligent optimization algorithms is proposed. The proposed maglev system adopts hybrid suspension system with permanent-magnet(PM) and electro magnet(EM) to reduce the suspension power loss and the teaching-learning based optimization(TLBO) that can overcome the drawbacks of conventional intelligent optimization algorithm is used. To obtain the mathematical model of hybrid suspension system, the magnetic equivalent circuit including leakage fluxes are used. Also, design restrictions such as cross section areas of PM and EM, the maximum length of PM, magnetic force are considered to choose the optimal parameters by intelligent optimization algorithm. To meet desired suspension power and lower power loss, the multi object function is proposed. To verify the proposed object function and intelligent optimization algorithms, we analyze the performance using the mean value and standard error of 10 simulation results. The simulation results show that the proposed method is more effective than conventional optimization methods.

A Study on the Inductance Calculation of SRM using Magnetic Circuit Analysis (자기회로 해석을 통한 SRM의 인덕턴스 산정에 관한 연구)

  • Choi Kyeong-Ho;Kim Dong-Hee;Kim Min-Huei
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.244-248
    • /
    • 2004
  • This paper present a inductance calculation method of Switched Reluctance Motor (SRM) for torque characteristic analysis using analytical model. Recently, many approaches of inductance calculations are accomplished with Finite Element Analysis (FEM) and curve fitting method using complex nonlinear magnetic circuit model. It this paper, a simple method for inductance calculation is proposed based on the motor design parameters. The simulation result of the proposed method are compared with a FEM analysis for, and a good accuracy is obtained.

  • PDF

Analysis of Iron Loss in a Amorphous Transformer (아몰퍼스 변압기의 철손해석)

  • Im, D.H.;Kwon, B.I.;Yun, S.B.;Park, S.C.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.79-81
    • /
    • 1993
  • In this paper, the iron loss of a amorphous transformer is calculated by the specific iron loss curve, after calculating flux densities in core using magnetic equivalent circuit method and FEM. In iron loss analysis using FEM, lamination model of amorphous transformer is transformed into anisotropy model, and it is known that the result is almost equal compared with the result of analysis using magnetic equivalent circuit method.

  • PDF

An Electrical Machine Design Technique Combining Magnetic Equivalent Circuit and Finite Element Methods (자기회로법과 유한요소법을 결합한 전기기기 설계)

  • Choi, Hong-Soon;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.18-20
    • /
    • 1999
  • In this paper, the space mapping algorithm is proposed for the design of electric machines. By the algorithm, we can combine the magnetic equivalent circuit and the finite element models mathematically and got the final design parameters with a few iterations while preserving the accuracy offered by the finite element model. The finite element model is generated by parametric techniques. For the validity of this algorithm, a simple permanent magnet device with fringing and leakage flux is dealt as a numerical example.

  • PDF

A Coupled Circuit and Field Analysis of a Stand-Alone Permanent-Magnet Synchronous Generator with Inset Rotor

  • Chan T. F.;Yan Lie-Tong;Lai L. L.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.253-257
    • /
    • 2005
  • By using a coupled circuit, time-stepping, two-dimensional finite element method (2-D FEM), the performance of a stand-alone permanent-magnet synchronous generator (PMSG) with inset rotor can be computed without involving the classical two-axis model. The effects of interpolar air gap length and armature resistance on the load characteristics are investigated. It is shown that the interpolar flux density, and hence the amount of voltage compensation, is affected by magnetic saturation. Validity of the coupled circuit and field analysis is confirmed by experiments on a prototype generator. The machine exhibits an approximately level load characteristic when it is supplying an isolated unity-power-factor load.

Model on the electro-magnetic characteristics of elastic ferromagnetic materials with vibrationg gap (탄성 고투자율 자성체의 공극진동에 따른 전자기 특성에 관한 모델)

  • 김대수;김왕곤;홍진웅
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.891-899
    • /
    • 1996
  • A model for predicting the characteristics of elastic ferromagnetic materials having a moving gap was presented. Based on the model parameters concerning behavior of material, such as the instantaneous field intensity, attractive force between the poles, length of gap, and the induced current/ emf in the circuit can be determined from the numerical integrations of the governing equations derived. From the results of the model it is found that when dc emf is imposed on the circuit the current sharply rise and fall for very short duration then stabilize at extremely low level which depends mainly on elasticity, permeabilities and ratio of resistivity. Subsequently output emf is shown stabilized at constant value which depends on the previous parameters as well as the resistivity ratio of primary to secondary circuit after sufficient progress of time.

  • PDF