• 제목/요약/키워드: Magnetic transition temperature

검색결과 251건 처리시간 0.024초

Studies of Nonstoichiometry and Physical Properties of the Perovskite $Sm_{1-x}Sr_xCoO_{3-y}$ System

  • 강진우;류광현;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권7호
    • /
    • pp.600-603
    • /
    • 1995
  • A series of samples in the Sm1-xSrxCoO3-y(x=0.00, 0.25, 0.50, 0.75 and 1.00) system has been prepared at 1200 ℃ under ambient atmosphere. The X-ray diffraction patterns of the samples with x=0.00 and 0.25 are indexed with orthorhombic symmetry like GdFeO3 and x=0.50 appears to be perfectly cubic. In the tetragonal system (x=0.75), the structure is similar to that of SrCoO2.80. The composition of x=1.00, SrCoO2.52, shows the brownmillerite-type structure. The reduced lattice volume is increased with x value in this system. The chemical analysis shows the τ value (the amount of the Co4+ ions in the system) is maximized at the composition of x=0.50. Nonstoichiometric chemical formulas are determined by the x, τ and y values. The electrical conductivity has been measured in the temperature range of 78 to 1000 K. The activation energy is minimum for those of x=0.25 and x=0.50 with metallic behavior. First-order semiconductor-to-metal transition of SmCoO3 is not observed. Instead, a broad, high-order semiconductor-to-metal transition is observed. In general, the effective magnetic moment is increased with increasing τ values at low temperature. At high temperature, the magnetic moment is maximum for that of x=0.00. The 3d-electrons are collective and give ferromagnetism in x=0.50.

Magnetoresistance behavior of $La_{1-\chi}Sr_\chiCoO_{3-\delta}$ films around the metal-insulator transition

  • Park, J. S.;Park, H. G.;Kim, C. O.;Lee, Y. P.;V. G. Prokhorov
    • 한국진공학회지
    • /
    • 제12권S1호
    • /
    • pp.100-103
    • /
    • 2003
  • The magnetoresistance (MR) of $La_{1-\chi}S_{\chi}CoO_{3-\delta}$ films prepared by pulsed-laser deposition were investigated in order to clarify the magnetotransport properties around the metal-insulator transition. For the films in the metallic state ($\chi$ > 0.25), the MR(T) manifests a small peak at the Curie temperature due to the spin-disorder scattering. The transition of the film into the insulating state ($\chi\;\leq$ 0.25) is accompanied by an essential growth of the MR and results in a significant increase in the MR(T) with decreasing temperature, due to a phase separation into the ferromagnetic-metal clusters and the insulating matrix.

Existence of a vortex-glass phase transition in an optimally doped BaFe1.8Co0.2As2 single crystal

  • Choi, Ki-Young;Kim, Kee Hoon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권2호
    • /
    • pp.16-19
    • /
    • 2013
  • The magneto-resistivity and electric field-current density (E-J) curves were investigated up to a magnetic field 9 T in the optimally doped $BaFe_{1.8}Co_{0.2}As_2$ single crystal with a superconducting temperature ($T_c$) of 24.6 K. The E-J Scaling behaviors below and above vortex glass transition temperature ($T_g$) were found, confirming the existence of the vortex glass phase transition. The critical exponents for the diverging spatial and time correlations at $T_g$, were obtained as v = $1.1{\pm}0.1$ and z = $4.5{\pm}0.3$, respectively. The obtained critical exponents are in good agreement with the predicted values of v ~ 1 - 2 and z > 4 within the 3D vortex glass theory.

불소화된 $YBa_2Cu_3O_{7-y}$ 초전도체의 구조적, 전기적 성질에 관한 연구 (A study on the structural and electric properties of fluorinated $YBa_2Cu_3O_{7-y}$)

  • 김재욱;김채옥
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권4호
    • /
    • pp.404-409
    • /
    • 1996
  • The structural and electric properties of $Y_{1-x}$YbF$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-y}$(x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) have been investigated by using XRD(X-ray diffraction), TMA(thennomechanical analysis), NMR(nuclear magnetic resonance) analysis and four probe method. $Y_{1-x}$YbF$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-y}$ samples were prepared by conventional solid-state reaction method using $Y_{2}$O$_{3}$, BaCO$_{3}$, CuO and YbF$_{3}$ power. TMA and high temperature XRD results shows that orthorhombic to tetragonal phase transition occurs in the unfluorinated 1-2-3 sample while the phase change is not observed in the fluorinated 1-2-3 samples. Superconducting transition temperature(T$_{c}$) increases with increasing YbF$_{3}$ content ; T$_{c}$, of the sample reaching maximum of 102K for x=0.3, and then decreases with further increasing YbF$_{3}$ content. The structural analysis and T$_{c}$ results shows that the fluorine doping stabilize the orthorhombic phase, together with the increase in T$_{c}$.}$ c/.TEX> c/.

  • PDF

MAGNETIC PROPERTIES OF $REPb_{2}$(RE: LIGHT RARE-EARTH ELEMENT) COMPOUNDS

  • Hattori, Y.;Sugioka, R.;Fukamichi, K.;Suzuki, K.;Goto, T.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.753-757
    • /
    • 1995
  • Systematic studies on the crystal structure and magnetic properties of light rare earth element(RE) compounds with Pb, $REPb_{2}$, have been carried out. Their crystal structure has been identified to be a $MoSi_{2}$-type. The values of the effective magnetic moment for $CePb_{2},\;PrPb_{2}\;and\;NdPb_{2}$ are respectively very close to the theoretical values of $RE^{3+}$. These three compounds are antiferromagnetic and exhibit a metamagnetic transition. The magnitude of the Neel temperature is proportional to two-thirds of the de Gennes factor. The magnetic entropy change for $NdPb_{2}$ is contrast to the value for $CePb_{2}$ heavy-fermion compound, comparable to the theoretical value. The magnetic contribution to the temperature dependence of resistivity for $PrPb_{2}$ is given by a form of -lnT in a wide temperature range, implying the Kondo system in analogy with $Cepb_{2}$.

  • PDF

페롭스카이트 La1/3Sr2/3FeO2.96의 결정학적 및 자기적 성질에 관한 연구 (Crystallographic and Magnetic Properties of a Perovskite La1/3Sr2/3FeO2.96)

  • 윤성현
    • 한국자기학회지
    • /
    • 제15권3호
    • /
    • pp.167-171
    • /
    • 2005
  • 다결정질 $La_{1/3}Sr_{2/3}FeO_{2.96}$의 전하불균형(charge disproportionation, CD) 전이현상과 그 전이온도를 전후로 한 자기적 상호작용의 변화양상을 X-선 회절, $M\ddot{o}ssbauer$ 분광계, 그리고 SQUID 자기력계를 이용하여 연구하였다. X선 분석결과, 시료의 결정구조는 공간군 R/3c인 rhombohedral 구조이며, 격자상수는 $a_{R}=5.4874\;\AA,\;a_R=60.07^{\circ}$이었다. $M\ddot{o}ssbauer$ 스펙트럼은 4.2 K에서부터 실온까지의 범위에서 취하였다 분석결과 저온에서는 각각 $Fe^{3+}$$Fe^{5+}$에 기인하는 두개의 6-선 스펙트럼이 중첩되어 나타났으며 Fe 이온의 원자가가 두개의 상이한 전하 상태로 분리된 반강자성 혼합원자가 상태임을 알 수 있었다. 반면 고온에서는 $Fe^{3.6+}$에 기인하는 단일 흡수선이 관측되어 상자성의 평균원자가 상태임을 알 수 있었다. 175K부터 200K의 온도 범위에서는 이 두 상태가 혼재되어 나타났으며 이 온도 범위에서 CD전이가 발생함을 알 수 있었다. CD전이의 근원은 열적으로 발생한 전하의 도약현상으로 설명할 수 있었다. 측정된 자기이력곡선의 분석 결과, 자성원자 사이에는 강한 반강자성 상호작용이 존재하며, 온도가 CD 전이온도를 넘어 상승하면서 $Fe^{3+}-Fe^{5+}$간의 상호작용이 한층 더 강한 상호작용으로 대치됨을 알 수 있었다.

Nanocomposite Magnetic Materials

  • Ludwig Schultz;Alberto Bollero;Axel Handstein;Dietrich Hinz;Karl-Hartmut Muller;Golden Kumar;Juergen Eckert;Oliver Gutfleisch;Anke Kirehner Aru Yan
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.381-393
    • /
    • 2002
  • Recent developments in nanocrystalline and nanocomposite rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning, mold casting and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated. With respect to high temperature applications melt spun $Sm(Co_{0.74}Fe_{0.1}Cu_{0.12}Zr_{0.04})_{7.5}$ ribbons were prepared, which showed coercivities of up to 0.53 T at 50$0^{\circ}C$. Partially amorphous $Nd_{60}Fe_xCo_{30-x}Al_{10}(0{\leq}x{\leq}30)$ alloys were prepared by copper mold casting. The effect of transition metal content on the glass-forming ability and the magnetic properties was investigated. The $Nd_{60}Co_{30}Al_{10}$ alloy exhibits an amorphous structure shown by the corresponding diffraction pattern. A small substitution of Co by 2.5 at.% Fe results In the formation of Fe-rich crystallites embedded in the Nd-rich amorphous matrix. The Fe-rich crystallites show hard magnetic behaviour at room temperature with a coercivity value of about 0.4 T, relatively low saturation magnetization and a Curie temperature of 500 K.

ErFe2O4 다결정체 시료의 자기적 특성 연구 (Magnetic Properties of Polycrystalline ErFe2O4)

  • 김재영;이보화
    • 한국자기학회지
    • /
    • 제18권6호
    • /
    • pp.217-220
    • /
    • 2008
  • Rare-earth iron oxide $ErFe_2O_4$의 다결정체 시료의 자기적 특성을 연구하였다. 단일상의 다결정체 $ErFe_2O_4$ 시료를 CO/$CO_2$ gas 분위기에서 고체상태반응법으로 합성하였다. X-ray diffraction 측정을 통해 $ErFe_2O_4$ 시료는 space group R3m Rhombohedral 구조를 가지며, 온도에 의존하는 magnetization 측정을 통해 250 K에서는 자기적 전이가, 220 K에서는 구조적 전이가 일어나는 2단계 상전이 현상을 확인하였다.

Electrical Transport Properties and Magnetoresistance of (1-x)La0.7Sr0.3MnO3/xZnFe2O4 Composites

  • Seo, Yong-Jun;Kim, Geun-Woo;Sung, Chang-Hoon;Lee, Chan-Gyu;Koo, Bon-Heun
    • 한국재료학회지
    • /
    • 제20권3호
    • /
    • pp.137-141
    • /
    • 2010
  • The $(1-x)La_{0.7}Sr_{0.3}MnO_3(LSMO)/xZnFe_2O_4$(ZFO) (x = 0, 0.01, 0.03, 0.06 and 0.09) composites were prepared by a conventional solid-state reaction method. We investigated the structural properties, magnetic properties and electrical transport properties of (1-x)LSMO/xZFO composites using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-cooled dc magnetization and magnetoresistance (MR) measurements. The XRD and SEM results indicate that LSMO and ZFO coexist in the composites and the ZFO mostly segregates at the grain boundaries of LSMO, which agreed well with the results of the magnetic measurements. The resistivity of the samples increased by the increase of the ZFO doping level. A clear metal-to-insulator (M-I) transition was observed at 360K in pure LSMO. The introduction of ZFO further downshifted the transition temperature (350K-160K) while the transition disappeared in the sample (x = 0.09) and it presented insulating/semiconducting behavior in the measured temperature range (100K to 400K). The MR was measured in the presence of the 10kOe field. Compared with pure LSMO, the enhancement of low-field magnetoresistance (LFMR) was observed in the composites. It was clearly observed that the magnetoresistance effect of x = 0.03 was enhanced at room temperature range. These phenomena can be explained using the double-exchange (DE) mechanism, the grain boundary effect and the intrinsic transport properties together.

종자 결정 성장법으로 제조된 $GdBa_2Cu_3O_{7-y}$ 벌크 초전도체의 자기적 특성 (Magnetic Properties of $GdBa_2Cu_3O_{7-y}$ Bulk Superconductors Fabricated by a Top-seeded Melt Growth Process)

  • 김광모;박순동;전병혁;고태국;김찬중
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.39-44
    • /
    • 2012
  • The fabrications condition and superconducting properties of top-seeded melt growth (TSMG) processed $GdBa_2Cu_3O_{7-y}$ (Gd123) bulk superconductors were studied. Processing parameters (a maximum temperature ($T_{max}$), a temperature for crystal growth ($T_G$) and a cooling rate ($R_G$) through a peritectic temperature ($T_P$) for the fabrication of single grain Gd123 superconductors were optimized. The magnetic levitation forces, trapped magnetic fields, superconducting transition temperature ($T_c$) and critical current density ($J_c$) of the Gd123 bulks superconductors were estimated. Single grain Gd123 bulk superconductors were successfully fabricated at the optimized processing condition. The $T_c$ of a TSMG processed Gd123 sample was 92.5 K and the $J_c$ at 77 K and 0 T was approximately $50kA/cm^2$. The trapped magnetic field contour and magnetic levitation forces were dependent on the top surface morphology of TSMG processed Gd123 samples. The single grain Gd123 samples, field-cooled at 77 K using a Nd-B-Fe permanent magnet with 5.27 kG and 30 mm dia., showed the trapped magnetic field contour of a single grain with a maximum of 4 kG at the sample center. The maximum magnetic levitation forces of the single grain Gd123 sample, field-cooled or zero field-cooled, were 40 N and 107 N, respectively.