• Title/Summary/Keyword: Magnetic stiffness

Search Result 191, Processing Time 0.028 seconds

Stick-slip Characteristics of Magnetorheological Elastomer under Magnetic Fields (자기장에 따른 자기유변탄성체의 스틱 슬립 현상 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Kim, Cheol-Hyun;Lee, Chul-Hee;Choi, Jong Myoung
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • This paper investigates the stick-slip characteristic of magnetorheological elastomer (MRE) between an aluminum plate and the surface of the MRE. MRE is a smart material and it can change its mechanical behavior with the interior iron particles under the influence of an applied magnetic field. Stick-slip is a movement of two surfaces relative to each other that proceeds as a series of jerks caused by alternate sticking from friction and sliding when the friction is overcome by an applied force. This special tribology phenomenon can lead to unnecessary wear, vibration, noise, and reduced service life of work piece. The stick-slip phenomenon is avoided as far as possible in the field of mechanical engineering. As this phenomenon is a function of material property, applied load, and velocity, it can be controlled using the characteristics of MRE. MRE as a soft smart material, whose mechanical properties such as modulus and stiffness can be changed via the strength of an external magnetic field, has been widely studied as a prospective replacement for general rubber in the mechanical domain. In this study, friction force is measured under different loads, speed, and magnetic field strength. From the test results, it is confirmed that the stick-slip phenomenon can be minimized under optimum conditions and can be applied in various mechanical components.

Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM

  • Allahkarami, Farshid;Nikkhah-Bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.141-155
    • /
    • 2017
  • This paper presents an investigation into the magneto-thermo-mechanical vibration and damping of a viscoelastic functionally graded-carbon nanotubes (FG-CNTs)-reinforced curved microbeam based on Timoshenko beam and strain gradient theories. The structure is surrounded by a viscoelastic medium which is simulated with spring, damper and shear elements. The effective temperature-dependent material properties of the CNTs-reinforced composite beam are obtained using the extended rule of mixture. The structure is assumed to be subjected to a longitudinal magnetic field. The governing equations of motion are derived using Hamilton's principle and solved by employing differential quadrature method (DQM). The effect of various parameter like volume percent and distribution type of CNTs, temperature change, magnetic field, boundary conditions, material length scale parameter, central angle, viscoelastic medium and structural damping on the vibration and damping behaviors of the nanocomposite curved microbeam is examined. The results show that with increasing volume percent of CNTs and considering magnetic field, material length scale parameter and viscoelastic medium, the frequency of the system increases and critically damped situation occurs at higher values of damper constant. In addition, the structure with FGX distribution type of CNTs has the highest stiffness. It is also observed that increasing temperature, structural damping and central angle of curved microbeam decreases the frequency of the system.

Analysis of Dynamic Touch-down and Take-off of HAMR Head (열 보조 자기기록 시스템 헤드의 touch-down 과 take-off 해석)

  • Choi, Jong-Hak;Kim, Seok-Hwan;Kim, Ki-Hoon;Park, Young-Pil;Park, No-Cheol;Park, Kyoung-Su
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.2
    • /
    • pp.61-66
    • /
    • 2012
  • In HDD industry, many technologies have been developed and investigated as means to increase the areal density of drives. Especially, heat assisted magnetic recording (HAMR) system has been considered as the next generation storage device. Most of the HAMR systems use near field optics as heating mechanism. Therefore, light delivery system is indispensable. We considered the light delivery system with laser diode (LD) mount and optical fiber. Mass and stiffness of the HAMR system using these LD mount and optical fiber are changed. The mass and stiffness of the HAMR system affects the slider dynamic behavior. It is necessary to analyze touch down (TD) and take off (TO). And, we performed the TD-TO experiment with HAMR suspension. Finally, we analyzed the result of TD-TO experiments. And we suggested the design of HAMR suspension to improve TD-TO performance.

A Numerical Study on Application of the Integrated Track System for a Magnetic Railway (자기부상철도 일체형 궤도시스템 적용을 위한 해석적 연구)

  • Ham, Junsu;Jung, Sub;Hwang, Won-Sup
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.40-45
    • /
    • 2015
  • The load of a maglev train, which is being considered a future transportation, is uniformly loaded on a levitated surface of a rail unlike a typical train because the maglev train is magnetically levitated and propelled. In addition, the driving performance is superior since the maglev train doesn't directly contact the railway. A integrated track system, to which a sleeper is installed toward a longitudinal direction instead of a perpendicular direction, is suggested, considering this loading characteristic. The longitudinal sleeper of this system is expected to contribute to stiffness increase of a bridge and weight-reduction of a girder. In this study, the structural characteristics of proposed and typical systems have been numerically compared and analyzed. In addition, the improvement of the integrated system has been proposed.

A study on the Standing Spin Wave Resonance of Ni-Fe Thin Films. (Ni-Fe 합금박막의 스핀파 공명 연구)

  • 백종성;서영수;김약연;임우영;이수형
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.100-105
    • /
    • 1994
  • Ni-Fe thin films are deposited on the corning glass substrate by means of RF magnetron sputtering system In order to investigate the dependence of the prorerties of Ni-Fe thin films on the film thickness, ferromagnetic reson¬ance spectrum has been examined. The effective magnetization $M_{eff}$ is constant for all samples, while the exchange stiffness constant A increases with the film thickness. A tendency that spectroscopic splitting factor g increases with the sample thickness, we expect that the increase of the contribution of the orbital motion to the magnetic moment as a reason for it.

  • PDF

Development of a 4-axis optical pickup actuator (4 축 광픽업 액추에이터의 개발)

  • Kim, Jae-Eun;Lee, Kyung-Taek;Hong, Sam-Nyol;Ko, Eui-Seok;Seo, Jeong-Kyo;Choi, In-Ho;Min, Byung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.856-860
    • /
    • 2008
  • Wire-suspensions in the conventional actuators mechanically support the moving part and guarantee the accuracy of the actuator without tangential tilt actuation. However, such a suspension configuration has considerable stiffness in the tangential tilt direction with two additional wire beams for the tangential tilt. Thus, we performed a design sensitivity analysis for the wire-suspension stiffness of 4-axis actuator and controlled the main parameters such as distance among wire-suspensions and wire-suspension length to allow tangential tilt flexibility. The elasticity of frame PCB that supports the moving part by wire-suspensions was also exploited to improve the flexibility of wire-suspension in the tangential tilt direction. A novel suspension structure was devised by establishing eight wire-suspensions at both sides of the moving part for electrical connection to coils. The magnetic circuit according to the proposed 4-axis actuator using multi-polar magnet and coils was also suggested for the generation of electromagnetic forces in the focusing, tracking, radial and tangential tilt directions.

  • PDF

Pulsatility of middle cerebral arteries is better correlated with white matter hyperintensities than aortic stiffening

  • Lee, Sang-Hwa;Kim, Yerim;Lee, Yeongbae;Lee, Ju-Hun
    • Annals of Clinical Neurophysiology
    • /
    • v.20 no.2
    • /
    • pp.79-84
    • /
    • 2018
  • Background: Pulsatility of cerebral arteries and aortic stiffness have been associated with white matter hyperintensities (WMH). We explored which is better correlated with the severity of WMH in a population with acute lacunar infarct. Methods: We included patients with acute small subcortical infarcts who underwent transcranial Doppler (TCD) and brachial ankle pulse wave velocity (baPWV). Exclusion criteria were any stenosis or occlusion on major cerebral arteries on magnetic resonance angiography; poor temporal insonation windows; ankle brachial index < 0.9; and atrial fibrillation. We assessed the performance of the pulsatility index of bilateral middle cerebral arteries (PI-MCA) and baPWV for predicting moderate-to-severe WMH, defined as an Age Related White Matter Changes score > 5, and then sought to find independent predictors using binary logistic regression analysis. Results: Eighty-three patients (56 males, mean age $61.5{\pm}11.4$) participated in the study. Uni-variate analysis showed old age and high PI-MCA were significantly correlated with moderate-to-severe WMH. However, baPWV was not associated with the severity of WMH. Multivariate analysis revealed old age (odds ratio per 1-year increase, 1.068; p = 0.044) and upper tertile of PI-MCA (odds ratio, 5.138; p = 0.049) were independently associated with moderate-to-severe WMH. Receiver-operating characteristics showed PI-MCA differentiated those with and without moderate-to-severe WMH with an area under the curve of 0.719. Conclusions: PI-MCA derived from TCD was better correlated with the severity of WMH than baPWV in a population with lacunar infarction. Pulsatility of cerebral arteries may better predict cerebral small vessel disease than the aortic stiffness index.

Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System (초전도 저널베어링 Substator의 특성평가)

  • Park, B.J.;Jung, S.Y.;Lee, J.P.;Park, B.C.;Jeong, N.H.;Sung, T.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.55-59
    • /
    • 2008
  • A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  • PDF

Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load (전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링)

  • Kim, Jun Soo;Kim, Seong Jong;Lee, Hyuk;Ha, Sung Kyu;Lee, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1547-1557
    • /
    • 2013
  • A forced vibration model of a rail system was established using the Timoshenko beam theory to determine the dynamic response of a rail under time-varying load considering the damping effect and stiffness of the elastic foundation. By using a Fourier series and a numerical method, the critical velocity and dynamic response of the rail were obtained. The forced vibration model was verified by using FEM and Euler beam theory. The permanent deformation of the rail was predicted based on the forced vibration model. The permanent deformation and wear were observed through the experiment. Parametric studies were then conducted to investigate the effect of five design factors, i.e., rail cross-section shape, rail material density, rail material stiffness, containment stiffness, and damping coefficient between rail and containment, on four performance indices of the rail, i.e., critical velocity, maximum deflection, maximum longitudinal stress, and maximum shear stress.

The Study of Vascular Dynamics for the Effect of a Compress Pack on Pain Relief using Magnetic Resonance Angiography (자기공명영상을 이용한 찜질 자극에 의한 통증 완화 효과에 대한 혈류 영상학적 고찰)

  • Baek, Ji-Won;Lim, Young-Khi
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.277-282
    • /
    • 2015
  • This study was to investigate the effects of the hot compress pack on alleviating local muscular discomfort, stiffness in limbs as well as the chronic pains such as migraine in terms of hemodynamics. In this study, the hot compress band was put on the neck and the local physiological change on the stimulation site and the cranial blood circulation change were examined. We recruited healthy volunteers (n=8, mean age: 32.13 (4.61)), who participated in the magnetic resonance imaging (MRI) study. Local skin color and temperature were measured for the local effect of the hot compress band and the changes of intra-cranial and extra-cranial blood vessels were examined with MR angiography (MRA) images. The skin temperature increased from $36.4^{\circ}C$ at the rest condition to $36.7^{\circ}C$ and $37.1^{\circ}C$ after 15 min and 30 min stimulation, respectively. The change of the extra-cranial blood vessels between pre-stimulation and post-stimulation of 30 min was significantly increased (+38.8%), while the change of the intra-cranial blood vessels was negligible. In this study, we demonstrated that the hot compress band on the neck yielded the increase of local skin temperature on the stimulation site and it made an effect on the extracranial circulation. In conclusion, the stimulation with a hot compress could facilitate the blood circulation, causing to relieve the muscular discomfort, stiffness in limbs as well as the chronic pains such as migraine.