• Title/Summary/Keyword: Magnetic resonance coupling (MRC)

Search Result 4, Processing Time 0.021 seconds

Wireless Power Transfer via Magnetic Resonance Coupling (MRC) with Reduced Standby Power Consumption

  • Lee, Byoung-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.637-644
    • /
    • 2019
  • Wireless power transfer (WPT) technology with various transfer mechanisms such as inductive coupling, magnetic resonance and capacitive coupling is being widely researched. Until now, power transfer efficiency (PTE) and power transfer capability (PTC) have been the primary concerns for designing and developing WPT systems. Therefore, a lot of studies have been documented to improve PTE and PTC. However, power consumption in the standby mode, also defined as the no-load mode, has been rarely studied. Recently, since the number of WPT products has been gradually increasing, it is necessary to develop techniques for reducing the standby power consumption of WPT systems. This paper investigates the standby power consumption of commercial WPT products. Moreover, a standby power reduction technique for WPT systems via magnetic resonance coupling (MRC) with a parallel resonance type resonator is proposed. To achieve a further standby power reduction, the voltage control of an AC/DC travel adapter is also adopted. The operational principles and characteristics are described and verified with simulation and experimental results. The proposed method greatly reduces the standby power consumption of a WPT system via MRC from 2.03 W to 0.19 W.

Models and Experiments for the Main Topologies of MRC-WPT Systems

  • Yang, Mingbo;Wang, Peng;Guan, Yanzhi;Yang, Zhenfeng
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1694-1706
    • /
    • 2017
  • Models and experiments for magnetic resonance coupling wireless power transmission (MRC-WPT) topologies such as the chain topology and branch topology are studied in this paper. Coupling mode theory based energy resonance models are built for the two topologies. Complete energy resonance models including input items, loss coefficients, and coupling coefficients are built for the two topologies. The storage and the oscillation model of the resonant energy are built in the time domain. The effect of the excitation item, loss item, and coupling coefficients on MRC systems are provided in detail. By solving the energy oscillation time domain model, distance enhancing models are established for the chain topology, and energy relocating models are established for the branch topology. Under the assumption that there are no couplings between every other coil or between loads, the maximum transmission capacity conditions are found for the chain topology, and energy distribution models are established for the branch topology. A MRC-WPT experiment was carried out for the verification of the above model. The maximum transmission distance enhancement condition for the chain topology, and the energy allocation model for the branch topology were verified by experiments.

Class-E Power Amplifier with Minimal Standby Power for Wireless Power Transfer System

  • Kim, Bong-Chul;Lee, Byoung-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.250-255
    • /
    • 2018
  • This paper presents a method for minimizing standby power consumption in wireless power transfer (WPT) system via magnetic resonance coupling (MRC) that operates at 6.78 MHz. The proposed circuit controls the required capacitance according to operational condition in order to reduce standby power consumption. Based on an impedance characteristic of the class-E power amplifier, operational principles of the proposed circuit are analyzed. Moreover, to verify the effectiveness of the proposed class-E power amplifier, an 8 W prototype for WPT system is implemented. The measured input power of the proposed class-E power amplifier at standby condition is reduced from 5.81 W to 3.53 W.

Some Basic Investigation on Wireless Power Transfer (무선 전력 전송에 관한 기본적인 고찰)

  • Park, Jongmin;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.959-965
    • /
    • 2014
  • This paper summarizes the previous research results of fundamental investigation done in SNU on the wireless power transfer. Firstly, the physical limitation of a wireless power transfer using the spherical modes is reviewed. It is found that wireless power transfer depends only on the radiation efficiency of the antennas and the distance between two antennas involved. Secondly, we review the characteristics of WPTS with different sources and compare the performance differences of WPTS according to the source type. In addition, the method for efficient WPTS is suggested when the distance between antennas is varied. Finally, by using the time domain solution of the coupled mode equation, we present an analytic formula which can be used to differentiate Inductive Coupling(IC) and Magnetic Resonance Coupling(MAC) which are often used ambiguously in wireless power transfer system.