• Title/Summary/Keyword: Magnetic resonance (MR), perfusion

Search Result 63, Processing Time 0.029 seconds

Cerebral Hemodynamic Analysis in Pediatric Moyamoya Patients using Perfusion Weighted MRI (관류 강조 자기공명 영상을 이용한 소아 모야모야 환아의 뇌 혈역학 분석)

  • Chang, Won-Seok;Kim, Tae-Gon;Lee, Seung-Koo;Choi, Jung-Uhn;Kim, Dong-Seok
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.3
    • /
    • pp.207-212
    • /
    • 2005
  • Objective: Classically, single photon emission tomography is known to be the reference standard for evaluating the hemodynamic status of patients with moyamoya disease. Recently, T2-weighted perfusion magnetic resonance(MR) imaging has been found to be effective in estimating cerebral hemodynamics in moyamoya disease. We aim to assess the utility of perfusion-weighted MR imaging for evaluating hemodynamic status of moyamoya disease. Methods: The subjects were fourteen moyamoya patients(mean age: 7.21 yrs) who were admitted at our hospital between Sep. 2001 to Sep 2003. Four normal children were used for control group. Perfusion MR imaging was performed before any treatment by using a T2-weighted contrast material-enhanced technique. Relative cerebral blood volume(rCBV) and time to peak enhancement(TTP) maps were calculated. Relative ratios of rCBV and TTP in the anterior cerebral artery(ACA), middle cerebral artery(MCA) and basal ganglia were measured and compared with those of the posterior cerebral artery(PCA) in each cerebral hemispheres. Using this data, we analysed the hemodynamic aspect of pediatric moyamoya disease patients in regarding to the age, Suzuki stage, signal change in FLAIR MR imaging, and hemispheres inducing symptoms. Results: The mean rCBV ratio of ACA, MCA did not differ between normal children and moyamoya patients. However the significant TTP delay was observed at ACA, MCA territories (mean = 2.3071 sec, 1.2089 see, respectively, p < 0.0001). As the Suzuki stage of patients is advanced, rCBV ratio is decreased and TTP differences increased. Conclusion: Perfusion MR can be applied for evaluating preoperative cerebral hemodynamic status of moyamoya patients. Furthermore, perfusion MR imaging can be used for determine which hemisphere should be treated, first.

Intravoxel Incoherent Motion Magnetic Resonance Imaging for Assessing Parotid Gland Tumors: Correlation and Comparison with Arterial Spin Labeling Imaging

  • Gao Ma;Xiao-Quan Xu;Liu-Ning Zhu;Jia-Suo Jiang;Guo-Yi Su;Hao Hu;Shou-Shan Bu;Fei-Yun Wu
    • Korean Journal of Radiology
    • /
    • v.22 no.2
    • /
    • pp.243-252
    • /
    • 2021
  • Objective: To compare and correlate the findings of intravoxel incoherent motion (IVIM) magnetic resonance (MR) imaging and arterial spin labeling (ASL) imaging in characterizing parotid gland tumors. Materials and Methods: We retrospectively reviewed 56 patients with parotid gland tumors evaluated by MR imaging. The true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and fraction of perfusion (f) values of IVIM imaging and tumor-to-parotid gland signal intensity ratio (SIR) on ASL imaging were calculated. Spearman rank correlation coefficient, chi-squared, Mann-Whitney U, and Kruskal-Wallis tests with the post-hoc Dunn-Bonferroni method and receiver operating characteristic curve assessments were used for statistical analysis. Results: Malignant parotid gland tumors showed significantly lower D than benign tumors (p = 0.019). Within subgroup analyses, pleomorphic adenomas (PAs) showed significantly higher D than malignant tumors (MTs) and Warthin's tumors (WTs) (p < 0.001). The D* of WTs was significantly higher than that of PAs (p = 0.031). The f and SIR on ASL imaging of WTs were significantly higher than those of MTs and PAs (p < 0.05). Significantly positive correlation was found between SIR on ASL imaging and f (r = 0.446, p = 0.001). In comparison with f, SIR on ASL imaging showed a higher area under curve (0.853 vs. 0.891) in discriminating MTs from WTs, although the difference was not significant (p = 0.720). Conclusion: IVIM and ASL imaging could help differentiate parotid gland tumors. SIR on ASL imaging showed a significantly positive correlation with f. ASL imaging might hold potential to improve the ability to discriminate MTs from WTs.

Perfusion MR imaging of Hippocampal sclerosis: Preliminary study

  • An, Su-Kyung;Chang, Kee-Hyun;Song, In-Chan;Han, Moon-Hee
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.168-168
    • /
    • 2001
  • Purpose: Cerebral perfusion, as measured by interictal SPECT and PET, is known to be decreased in the affected hippocampus of the patients with hippocampal sclerosis. The purpose of th study is to evaluate the capability of perfusion MR imaging to demonstrate ipsilate hypopefusion in patients with hippocampal sclerosis.

  • PDF

Comparison of Pulsed Arterial Spin Labeling with Conventional Perfusion MRI in Moyamoya Disease Patient (모야모야병에서 펄스 동맥 스핀 표지 영상과 고식적인 관류자기공명영상의 비교)

  • Jo, Gwang-Ho;Bae, Sung-Jin
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.427-433
    • /
    • 2007
  • This study was conducted to investigate the usefulness of PASL image technique through visual and quantitative assessment by dividing CBF image, conventional perfusion magnetic resonance image, anterior cerebral artery, middle cerebral artery and posterior cerebral artery into 6 territories both right and left in moyamoya disease. In visual assessment, the scope of decreased perfusion in the PASL CBF image and conventional perfusion MR CBF image agreed with the position of deficiency in the MR image. The quantitative assessment, showed that the scope and position of decreased perfusion accord with both in the PASL CBF image and the existing conventional perfusion MR CBF image but the assessment of measuring the quantity of perfusion according to signal intensity showed a little difference.

  • PDF

Prediction of Infarction in Acute Cerebral Ischemic Stroke by Using Perfusion MR Imaging and $^{99m}Tc-HMPAO$ SPECT (급성 허혈성 뇌졸중에서 관류 자기공명영상과 99mTC-HMPAO 단광자방출단층촬영술을 이용한 뇌경색의 예측)

  • Ho Cheol Choe;Sun Joo Lee;Jae Hyoung Kim
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.1
    • /
    • pp.55-63
    • /
    • 2002
  • Purpose : We investigated the predictive values of relative CBV measured with perfusion MR imaging, and relative CBF measured with SPECT for tissue outcome in acute ischemic stroke. Material and Methods : Thirteen patients, who had acute unilateral middle cerebral artery occlusion, underwent perfusion MR imaging, and $^{99m}Tc-HMPAO$ SPECT within 6 hours after the onset of symptoms. Lesion-to-contralateral ratios of perfusion parameters were measured, and best cut-off values of both parameter ratios with their accuracy to discriminate between regions with and without evolving infarction were calculated. Results : Mean relative CBV ratios in regions with evolving infarction and without evolving infarction were $0.58{\pm}0.27$ and $0.9{\pm}0.17$ (p < 0.001), and mean relative CBF ratios in those regions were $0.41{\pm}0.22$ and $0.71{\pm}0.14$ (p < 0.001). The best cutoff values to discriminate between regions with and without evolving infarction were estimated to be 0.80 for relative CBV ratio and 0.56 for relative CBF ratio. The sensitivity, specificity and efficiency of each cutoff value were 80.6, 87.5, 82.7% for relative CBV ratio, and 72.2, 75.0, 73.0% for relative CBF ratio (p > 0.05 between two parameters). Conclusion Measurement of relative CBV and relative CBE may be useful in predicting tissue outcome in acute ischemic stroke.

  • PDF

Reperfusion Hyperemia Demonstrated on Perfusion MRI: It′s Relationship with Programmed Cell Death

  • 이승구;김동익;김상흠;김시연;인연권
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.170-170
    • /
    • 2001
  • Purpose: To evaluate the relationship between reperfusion hyperemia in reversible cerebral ischem and the degree of programmed cell death. Method: We produced the animal models of reversible cerebral ischemia in 10 cats by mean of middle cerebral artery (MCA) occlusion with transorbital approach. MCA was occluded b microvascular clamp for an hour. MR imaging was performed at 0, 1, 2 days after ischemi and reperfusion. Perfusion (PWI) [Contrast enhanced GRE EPI, TR/TE= 1500/40, 40 Phases, 128 matrix, 12 cm FOV] and diffusion (DWI) (SE EPI, b=0, 500, 1000) weighted images were obtained using Philips Intera 1.57 system. rCBV and ADC maps were calculated wi IDL based postprocessing program. Tissue slices were obtained after the last MR imagin TUNEL, Calbin and Acid-Fuscin staining were done for corresponding slices as MR imagin We investigated the differences of degree of apoptosis in the area of reperfusion hyperemia.

  • PDF

Development of 3D Mapping Algorithm with Non Linear Curve Fitting Method in Dynamic Contrast Enhanced MRI

  • Yoon Seong-Ik;Jahng Geon-Ho;Khang Hyun-Soo;Kim Young-Joo;Choe Bo-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2005
  • Purpose: To develop an advanced non-linear curve fitting (NLCF) algorithm for dynamic susceptibility contrast study of brain. Materials and Methods: The first pass effects give rise to spuriously high estimates of $K^{trans}$ in voxels with large vascular components. An explicit threshold value has been used to reject voxels. Results: By using this non-linear curve fitting algorithm, the blood perfusion and the volume estimation were accurately evaluated in T2*-weighted dynamic contrast enhanced (DCE)-MR images. From the recalculated each parameters, perfusion weighted image were outlined by using modified non-linear curve fitting algorithm. This results were improved estimation of T2*-weighted dynamic series. Conclusion: The present study demonstrated an improvement of an estimation of kinetic parameters from dynamic contrast-enhanced (DCE) T2*-weighted magnetic resonance imaging data, using contrast agents. The advanced kinetic models include the relation of volume transfer constant $K^{trans}\;(min^{-1})$ and the volume of extravascular extracellular space (EES) per unit volume of tissue $\nu_e$.

  • PDF