DOI QR코드

DOI QR Code

Intravoxel Incoherent Motion Magnetic Resonance Imaging for Assessing Parotid Gland Tumors: Correlation and Comparison with Arterial Spin Labeling Imaging

  • Gao Ma (Department of Radiology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Xiao-Quan Xu (Department of Radiology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Liu-Ning Zhu (Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Jia-Suo Jiang (Department of Radiology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Guo-Yi Su (Department of Radiology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Hao Hu (Department of Radiology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Shou-Shan Bu (Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Fei-Yun Wu (Department of Radiology, The First Affiliated Hospital of Nanjing Medical University)
  • Received : 2020.01.11
  • Accepted : 2020.06.06
  • Published : 2021.02.01

Abstract

Objective: To compare and correlate the findings of intravoxel incoherent motion (IVIM) magnetic resonance (MR) imaging and arterial spin labeling (ASL) imaging in characterizing parotid gland tumors. Materials and Methods: We retrospectively reviewed 56 patients with parotid gland tumors evaluated by MR imaging. The true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and fraction of perfusion (f) values of IVIM imaging and tumor-to-parotid gland signal intensity ratio (SIR) on ASL imaging were calculated. Spearman rank correlation coefficient, chi-squared, Mann-Whitney U, and Kruskal-Wallis tests with the post-hoc Dunn-Bonferroni method and receiver operating characteristic curve assessments were used for statistical analysis. Results: Malignant parotid gland tumors showed significantly lower D than benign tumors (p = 0.019). Within subgroup analyses, pleomorphic adenomas (PAs) showed significantly higher D than malignant tumors (MTs) and Warthin's tumors (WTs) (p < 0.001). The D* of WTs was significantly higher than that of PAs (p = 0.031). The f and SIR on ASL imaging of WTs were significantly higher than those of MTs and PAs (p < 0.05). Significantly positive correlation was found between SIR on ASL imaging and f (r = 0.446, p = 0.001). In comparison with f, SIR on ASL imaging showed a higher area under curve (0.853 vs. 0.891) in discriminating MTs from WTs, although the difference was not significant (p = 0.720). Conclusion: IVIM and ASL imaging could help differentiate parotid gland tumors. SIR on ASL imaging showed a significantly positive correlation with f. ASL imaging might hold potential to improve the ability to discriminate MTs from WTs.

Keywords

References

  1. Gokce E. Multiparametric magnetic resonance imaging for the diagnosis and differential diagnosis of parotid gland tumors. J Magn Reson Imaging 2020;52:11-32  https://doi.org/10.1002/jmri.27061
  2. Razek AAKA. Characterization of salivary gland tumours with diffusion tensor imaging. Dentomaxillofac Radiol 2018;47:20170343 
  3. Razek AAKA, Mukherji SK. State-of-the-art imaging of salivary gland tumors. Neuroimaging Clin N Am 2018;28:303-317  https://doi.org/10.1016/j.nic.2018.01.009
  4. Razek AAKA. Routine and advanced diffusion imaging modules of the salivary glands. Neuroimaging Clin N Am 2018;28:245-254  https://doi.org/10.1016/j.nic.2018.01.010
  5. Eida S, Sumi M, Nakamura T. Multiparametric magnetic resonance imaging for the differentiation between benign and malignant salivary gland tumors. J Magn Reson Imaging 2010;31:673-679  https://doi.org/10.1002/jmri.22091
  6. Tao X, Yang G, Wang P, Wu Y, Zhu W, Shi H, et al. The value of combining conventional, diffusion-weighted and dynamic contrast-enhanced MR imaging for the diagnosis of parotid gland tumours. Dentomaxillofac Radiol 2017;46:20160434 
  7. Razek AAKA, Samir S, Ashmalla GA. Characterization of parotid tumors with dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging and diffusion-weighted MR imaging. J Comput Assist Tomogr 2017;41:131-136  https://doi.org/10.1097/RCT.0000000000000486
  8. Sakamoto J, Imaizumi A, Sasaki Y, Kamio T, Wakoh M, Otonari-Yamamoto M, et al. Comparison of accuracy of intravoxel incoherent motion and apparent diffusion coefficient techniques for predicting malignancy of head and neck tumors using half-Fourier single-shot turbo spin-echo diffusion-weighted imaging. Magn Reson Imaging 2014;32:860-866  https://doi.org/10.1016/j.mri.2014.05.002
  9. Choi JW, Moon WJ. Gadolinium deposition in the brain: current updates. Korean J Radiol 2019;20:134-147  https://doi.org/10.3348/kjr.2018.0356
  10. Dai YL, King AD. State of the art MRI in head and neck cancer. Clin Radiol 2018;73:45-59  https://doi.org/10.1016/j.crad.2017.05.020
  11. Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 1998;208:410-416  https://doi.org/10.1148/radiology.208.2.9680569
  12. Kato H, Kanematsu M, Watanabe H, Kajita K, Mizuta K, Aoki M, et al. Perfusion imaging of parotid gland tumours: usefulness of arterial spin labeling for differentiating Warthin's tumours. Eur Radiol 2015;25:3247-3254  https://doi.org/10.1007/s00330-015-3755-7
  13. Razek AAKA. Multi-parametric MR imaging using pseudo-continuous arterial-spin labeling and diffusion-weighted MR imaging in differentiating subtypes of parotid tumors. Magn Reson Imaging 2019;63:55-59  https://doi.org/10.1016/j.mri.2019.08.005
  14. Kami YN, Sumi M, Takagi Y, Sasaki M, Uetani M, Nakamura T. Arterial spin labeling imaging for the parotid glands of patients with Sjogren's syndrome. PLoS One 2016;11:e0150680 
  15. Razek AAKA. Arterial spin labelling and diffusion-weighted magnetic resonance imaging in differentiation of recurrent head and neck cancer from post-radiation changes. J Laryngol Otol 2018;132:923-928  https://doi.org/10.1017/S0022215118001743
  16. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505  https://doi.org/10.1148/radiology.168.2.3393671
  17. Sumi M, Van Cauteren M, Sumi T, Obara M, Ichikawa Y, Nakamura T. Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors. Radiology 2012;263:770-777  https://doi.org/10.1148/radiol.12111248
  18. Shen J, Xu XQ, Su GY, Hu H, Shi HB, Liu W, et al. Intravoxel incoherent motion magnetic resonance imaging of the normal-appearing parotid glands in patients with differentiated thyroid cancer after radioiodine therapy. Acta Radiol 2018;59:204-211  https://doi.org/10.1177/0284185117709037
  19. Su GY, Xu XQ, Wang YY, Hu H, Shen J, Hong XN, et al. Feasibility study of using intravoxel incoherent motion MRI to detect parotid gland abnormalities in early-stage Sjogren syndrome patients. J Magn Reson Imaging 2016;43:1455-1461  https://doi.org/10.1002/jmri.25096
  20. Chu C, Zhou N, Zhang H, Dou X, Li M, Liu S, et al. Correlation between intravoxel incoherent motion MR parameters and MR nodular grade of parotid glands in patients with Sjogren's syndrome: a pilot study. Eur J Radiol 2017;86:241-247  https://doi.org/10.1016/j.ejrad.2016.11.021
  21. Fujima N, Yoshida D, Sakashita T, Homma A, Tsukahara A, Tha KK, et al. Intravoxel incoherent motion diffusion-weighted imaging in head and neck squamous cell carcinoma: assessment of perfusion-related parameters compared to dynamic contrast-enhanced MRI. Magn Reson Imaging 2014;32:1206-1213  https://doi.org/10.1016/j.mri.2014.08.009
  22. Lin M, Yu X, Luo D, Ouyang H, Xie L, Wu B, et al. Investigating the correlation of arterial spin labeling and dynamic contrast enhanced perfusion in primary tumor of nasopharyngeal carcinoma. Eur J Radiol 2018;108:222-229  https://doi.org/10.1016/j.ejrad.2018.09.034
  23. Yamamoto T, Kimura H, Hayashi K, Imamura Y, Mori M. Pseudo-continuous arterial spin labeling MR images in Warthin tumors and pleomorphic adenomas of the parotid gland: qualitative and quantitative analyses and their correlation with histopathologic and DWI and dynamic contrast enhanced MRI findings. Neuroradiology 2018;60:803-812  https://doi.org/10.1007/s00234-018-2046-9
  24. Dolgorsuren EA, Harada M, Kanazawa Y, Abe T, Otomo M, Matsumoto Y, et al. Correlation and characteristics of intravoxel incoherent motion and arterial spin labeling techniques versus multiple parameters obtained on dynamic susceptibility contrast perfusion MRI for brain tumors. J Med Invest 2019;66:308-313  https://doi.org/10.2152/jmi.66.308
  25. Shen N, Zhao L, Jiang J, Jiang R, Su C, Zhang S, et al. Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion. J Magn Reson Imaging 2016;44:620-632 https://doi.org/10.1002/jmri.25191
  26. Lin Y, Li J, Zhang Z, Xu Q, Zhou Z, Zhang Z, et al. Comparison of intravoxel incoherent motion diffusion-weighted MR imaging and arterial spin labeling MR imaging in gliomas. Biomed Res Int 2015;2015:234245 
  27. Ren T, Wen CL, Chen LH, Xie SS, Cheng Y, Fu YX, et al. Evaluation of renal allografts function early after transplantation using intravoxel incoherent motion and arterial spin labeling MRI. Magn Reson Imaging 2016;34:908-914  https://doi.org/10.1016/j.mri.2016.04.022
  28. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837-845  https://doi.org/10.2307/2531595
  29. Dong Y, Lei GW, Wang SW, Zheng SW, Ge Y, Wei FC. Diagnostic value of CT perfusion imaging for parotid neoplasms. Dentomaxillofac Radiol 2014;43:20130237 
  30. Lee FK, King AD, Ma BB, Yeung DK. Dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) for differential diagnosis in head and neck cancers. Eur J Radiol 2012;81:784-788  https://doi.org/10.1016/j.ejrad.2011.01.089
  31. Fujima N, Kudo K, Tsukahara A, Yoshida D, Sakashita T, Homma A, et al. Measurement of tumor blood flow in head and neck squamous cell carcinoma by pseudo-continuous arterial spin labeling: comparison with dynamic contrast-enhanced MRI. J Magn Reson Imaging 2015;41:983-991  https://doi.org/10.1002/jmri.24637
  32. Federau C, Hagmann P, Maeder P, Muller M, Meuli R, Stuber M, et al. Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle. PLoS One 2013;8:e72856 
  33. Gunther M, Oshio K, Feinberg DA. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 2005;54:491-498  https://doi.org/10.1002/mrm.20580
  34. Bogner W, Pinker-Domenig K, Bickel H, Chmelik M, Weber M, Helbich TH, et al. Readout-segmented echo-planar imaging improves the diagnostic performance of diffusion-weighted MR breast examinations at 3.0 T. Radiology 2012;263:64-76  https://doi.org/10.1148/radiol.12111494
  35. Lemke A, Stieltjes B, Schad LR, Laun FB. Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging 2011;29:766-776  https://doi.org/10.1016/j.mri.2011.03.004
  36. Yuan J, Wong OL, Lo GG, Chan HHL, Wong TT, Cheung PSY. Statistical assessment of bi-exponential diffusion weighted imaging signal characteristics induced by intravoxel incoherent motion in malignant breast tumors. Quant Imaging Med Surg 2016;6:418-429 https://doi.org/10.21037/qims.2016.08.05