• 제목/요약/키워드: Magnetic relaxation

검색결과 276건 처리시간 0.022초

3차원 제2종 초전도체의 표면장벽에 대한 자속의 이완 (Vortex relaxation for the surface barrier in 3D type-II superconductor)

  • 김건철;천미연;김영철;김봉준
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.262-265
    • /
    • 1999
  • We report the activation energies which is calculated by adding a term being neglected usually, and magnetic relaxation effects for the surface barrier. The activation energies U at initial magnetization m (m$_{en}$ and m$_{ex}$) and equilibrium magnetization m$_{eq}$ are nearly similar to those of Burlachkov, but the m dependence of the activation energy U is remarkably different. The relaxation effects, which were determined by the m dependence of the activation energies U, are nonlinear for vortex entry, but linear at the initial stage and nonlinear at m(Int) ${\simeq}$ m$_{eq}$ for vortex exit. During relaxation process, the vortex entry at m = m$_{en}$ is faster than the vortex exit at m = m$_{ex}$ by about factor 90. The vortex exit at m = m$_{eq}$ is faster than one at m = m$_{ex}$ by about factor 1.3

  • PDF

티오아세트아미드 / 아세톤 용액의 아민기의 핵자기이완속도의 온도 및 압력 의존 (Temperature and Pressure Dependence of the Nuclear Magnetic Relaxation Rates of -$NH_2$ Group in Thioacetamide / Acetone Solutions)

  • 김건;최영상;윤창주
    • 대한화학회지
    • /
    • 제36권1호
    • /
    • pp.33-37
    • /
    • 1992
  • 티오아세트아미드/아세톤 용액에 대한 $^{14}N$ 이완속도를 $NH_2$기의 $^1H$ 공명 신호의 자세한 선모양분석으로부터 구하였다. 압력과 온도의 효과를 조사하고 분자 재배향의 활성화에너지를 구하였다. $NH_2$기의 $^1H$ 이온속도도 압력과 온도의 함수로 구하였다. 이들 결과를 아민기의 $^{14}N$ 이완의 결과와 함께 고찰하였다.

  • PDF

NONPOTENTIAL PARAMETERS OF SOLAR ACTIVE REGION AR 5747

  • MOON Y.-J.;YUN H. S.;CHOE GWANGSON;PARK Y. D.;MICKEY D. L.
    • 천문학회지
    • /
    • 제33권1호
    • /
    • pp.47-55
    • /
    • 2000
  • Nonpotential characteristics of magnetic fields in AR 5747 are examined using Mees Solar Observatory magnetograms taken on Oct. 20, 1989 to Oct. 22, 1989. The active region showed such violent flaring activities during the observational span that strong X-ray flares took place including a 2B/X3 flare. The magnetogram data were obtained by the Haleakala Stokes Polarimeter which provides simultaneous Stokes profiles of the Fe I doublet 6301.5 and 6302.5. A nonlinear least square method was adopted to derive the magnetic field vectors from the observed Stokes profiles and a multi-step ambiguity solution method was employed to resolve the $180^{\circ}$ ambiguity. From the ambiguity-resolved vector magnetograms, we have derived a set of physical quantities characterizing the field configuration, which are magnetic flux, vertical current density, magnetic shear angle, angular shear, magnetic free energy density, a measure of magnetic field discontinuity MAD and linear force-free coefficient. Our results show that (1) magnetic nonpotentiality is concentrated near the inversion line in the flaring sites, (2) all the physical parameters decreased with time, which may imply that the active region was in a relaxation stage of its evolution, (3) 2-D MAD has similar patterns with other nonpotential parameters, demonstrating that it can be utilized as an useful parameter of flare producing active region, and (4) the linear force-free coefficient could be a evolutionary indicator with a merit as a global nonpotential parameter.

  • PDF

펄스 자기장을 이용한 잔류 응력 완화 연구 (A Study on the Stress Relief by Pulse Magnetic Treatment)

  • 오주숙;양원존;이종훈;박용호
    • 열처리공학회지
    • /
    • 제24권3호
    • /
    • pp.149-155
    • /
    • 2011
  • Residual stress relief by pulse magnetic treatment is attractive because the process is carried out at room temperature and magnetic fields that are easy to produce and control can be used. This study shows that strong pulse magnetic treatment can lead to stress relaxation of structural steels instead of a conventional heat treatment process. And it makes a comparative study about pulse magnetic treatment and tempering by using Larson-Miller equation. When the specimen was subjected to a pulse magnetic treatment process the residual stress in the specimen was reduced by about 13.8%. It could be compared with tempering at $200^{\circ}C$ for 2hours by using thermal effect of Larson-Miller equation. As a result, it is considered that the pulsed magnetic treatment have an effect of the stress relation by tempering at $200^{\circ}C$ for 2 hours.

Investigation on structural symmetry of CsCoCl3·2H2O crystals by magic-angle spinning 1H and static 133Cs nuclear magnetic resonance

  • Park, Sang Hyeon;Jang, Du Chang;Jeon, Hara;Gyeong, Oh Yi;Lim, Ae Ran
    • 한국자기공명학회논문지
    • /
    • 제26권1호
    • /
    • pp.10-16
    • /
    • 2022
  • The phase transition temperatures of CsCoCl3·2H2O crystals are investigated via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Three endothermic peaks at temperatures of 370 K (=TC1), 390 K (=TC2), and 416 K (=TC3) were observed for phase transitions from CsCoCl3·2H2O to CsCoCl3·1.5H2O, to CsCoCl3·H2O, and then to CsCoCl3·0.5H2O, respectively. In addition, the spin-lattice relaxation time T in the rotating frame and T1 in the laboratory frame as well as changes in chemical shifts for 1H and 133Cs near TC1 were found to be temperature dependent. Our analyses results indicated that the changes of chemical shifts, T, and T1 are associated with structural phase transitions near temperature TC1. The changes of chemical shifts, T, and T1 near TC1 were associated with structural phase transitions, owing to the changes in the symmetry of the structure formed of H2O and Cs+ ions. Consequently, the structural symmetry in CsCoCl3·2H2O crystals based on temperature is discussed by the environments of their H and Cs nuclei.

Study on nuclear magnetic resonance of superionic conductor NH4HSeO4 in rotating frame

  • Choi, Jae Hun;Lim, Ae Ran
    • 한국자기공명학회논문지
    • /
    • 제18권1호
    • /
    • pp.41-46
    • /
    • 2014
  • In order to obtain information on the structural geometry of $NH_4HSeO_4$ near the phase transition temperature, the spectrum and spin-lattice relaxation time in the rotating frame $T_{1{\rho}}$ for the ammonium and hydrogen-bond protons were investigated through $^1H$ MAS NMR. $T_{1{\rho}}$ for the hydrogen-bond protons abruptly decreased at high temperature and it is associated with the change in the structural geometry in $O-H{\cdots}O$ bonds. This mobility of the hydrogen-bond protons may be the main reason for the high conductivity.

$^{13}C$ Solid State NMR Study on the Dynamics of the Poly(vinyl butylal) with Various Water Contents

  • Hyun Namgoong;Kim, Jong-Soo;Han, Oc-Hee
    • 한국자기공명학회논문지
    • /
    • 제6권1호
    • /
    • pp.1-11
    • /
    • 2002
  • Physical properties of PVB [Poly(vinyl butyral)] polymer are strongly correlated with water contents in the polymer. Thus dynamics of PVB containing 10~50(w/w) % of water were studied by $^{13}$ C CP/MAS/DD over the temperature range 293K -348K. From the Peak area, line width, chemical shift, and relaxation times ( $T_{1}$ $T_{1p}$) measured at 9.4 T, it was deduced that water facilitates molecular dynamics of the PVB molecules overall including conformational exchange of the racemic and meso butyaldehyde rings in the PVB. However, the influence of water was not linear to the amount of water in the PVB samples. It is suggested that water up to 30 w/w % of the sample is closely bound to the PVB polymer and water relatively free from the PVB polymer starts to appear when water is added more than 30 w/w %.%.

  • PDF

Thermodynamic properties and structural geometry of KMgCl3·6H2O single crystals

  • Yoon, Hyo In;Lim, Ae Ran
    • 한국자기공명학회논문지
    • /
    • 제19권3호
    • /
    • pp.119-123
    • /
    • 2015
  • The thermodynamic properties and structural geometry of $KMgCl_3{\cdot}6H_2O$ were investigated using thermogravimetric analysis, differential scanning calorimetry, and nuclear magnetic resonance. The initial mass loss occurs around 351 K ($=T_d$), which is interpreted as the onset of partial thermal decomposition. Phase transition temperatures were found at 435 K ($=T_{C1}$) and 481 K ($=T_{C2}$). The temperature dependences of the spin-lattice relaxation time $T_1$ for the $^1H$ nucleus changes abruptly near $T_{C1}$. These changes are associated with changes in the geometry of the arrangement of octahedral water molecules.

Microwave and RF Heating for Medical Application under Noninvasive Temperature Measurement Using Magnetic Resonance

  • Nikawa, Yoshio;Ishikawa, Akira
    • Journal of electromagnetic engineering and science
    • /
    • 제10권4호
    • /
    • pp.244-249
    • /
    • 2010
  • Recent development of magnetic resonance imaging (MRI) equipment enables interventional radiology (IVR) as diagnosis and treatment under MRI usage. In this paper, a new methodology for magnetic resonance (MR) scanner to apply not only diagnostic equipment but for treatment one is discussed. The temperature measuring procedure under MR is to measure phase shift of $T_1$, which is the longitudinal relaxation time of proton, for the position inside a sample material with the application of pulsed RF for heating inside the sample as artificial dielectrics. The result shows the possibility to apply MR as temperature measuring equipment and as a heating equipment for applying such as hyperthermia heating modality.

Annealing Effect on Magnetic Properties and Electromagnetic Absorption Behaviors for Fe-Cr Alloy Powder-Polymer Composites

  • Lee, Sung-Jae;Kim, Yoon-Bae;Lee, Kyung-Sub;Kim, Sang-Woo
    • Journal of Magnetics
    • /
    • 제12권1호
    • /
    • pp.49-52
    • /
    • 2007
  • We investigated annealing effect of microforged powders on magnetic properties and electromagnetic absorption behaviors for ferromagnetic Fe-Cr metal alloy powder-polymer composites. The coercive properties greatly decreased with annealing temperature and the magnetic permeability had significantly increased after microforging and subsequent annealing treatment, due to a reduction in lattice strain of the microforged powders. The power loss in the far field regime also had greatly increased after microforging and subsequent annealing treatment in frequency range from 50 MHz to 6 GHz. As a result, the electromagnetic absorption of ferromagnetic Fe-Cr alloy metal powder-polymer composites was highly improved because of the relaxation of the internal strain during annealing process.