• Title/Summary/Keyword: Magnetic material

Search Result 1,943, Processing Time 0.031 seconds

Carbonation of coal fly ash for construction materials (탄산화 건자재 제조를 위한 석탄 비산회의 탄산화)

  • Park, Jun-Young;Kim, Yoo-Taek;Kim, Hyun-Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.147-151
    • /
    • 2012
  • Carbon dioxide ($CO_2$) could be stored in the form of Ca and Mg compounds including alkaline earth metal by carbonation. The possibility of $CO_2$ storage was tested by using desulfurized ash from fluidized bed type boiler as raw material. Autoclave was used for maintaining the reaction pressure and temperature for the carbonation. The analysis of weight change rate, XRD, and TG/DTA proved that more than 15 % of carbonation rate was obtained under 10 $kgf/cm^2$ and $120^{\circ}C$-10 min.

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.

Introduction to the Technology, Applications, Products, Markets, R&D, and Perspectives of Nanofoods in the Food Industry

  • Kim, Dong-Myong;Lee, Gee-Dong
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.4
    • /
    • pp.348-357
    • /
    • 2006
  • Nano is a unit that designates a billionth; accordingly nanotechnology could be described as the study and applications of the unique characteristics and phenomena of nanometer size materials. Applications of nanotechnology fall into two categories (one is top-down and the other is bottom-up). Currently, most products are the results of the top-down approach. Nanofoods have distinct functional characteristics stemming from the size, mass, chemical combinations, electrolytic features, magnetic properties of food sources at the nano level and which can be applied for safe absorption and delivery into the body. The greatest advantage of nanofood is that it permits the efficient use of small quantities of nutritional elements by increasing digestive absorption ability and by delivering natural elements without any change in their original characteristics. On the other hand, there are still unsolved problems, such as questions about safety and introduction of harmful material. The demand for new commercial food products is increasing, and commercial food producers are gradually combining nanotechnology and traditional food preparation methods. Nanofoods will improve our eating habits remarkably in the future. Tomorrow we will design nanofoods by shaping molecules and atoms. It will have a big impact on the food and food-processing industries. The future belongs to new products and new processes with the goals of customizing and personalizing consumer products. Nanotechnology is expected to be applied to not only foods themselves, but also to food packaging, production, safety, processing and storage. Also, it is believed that nanotechnology will be applied tracking finished products back to production facilities and even to specific processing equipment in those facilities. The aim of this study is the introduction of technology, applications, products, markets, R&D, and perspectives of nanofoods in the food industry.

TME EFFECT OF MAGNETISM(NEODYMIUM MAGNET) ON BONE FORMATION AROUND TITANIUM IMPLANTS INSERTED INTO THE TIBIA OF RABBIT (Rabbit의 tibia에 매식된 titanium시편 내부에 설치한 희토류 자석의 자성이 주위의 골형성에 미치는 영향에 관한 연구)

  • Park Myung-Won;Lee Sung-Bok;Kwon Kung-Rock;Choi Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.519-527
    • /
    • 2005
  • Statement of problem : There are many articles that showed that the magnetism affected the bone formation around titanium implant. It means that a proper magnetism made the osseointegration improved around the implant. So after additional research on the other effect of magnetism on bone formation in implant therapy, we can conclude its possibility of clinical application on implant treatment. Purpose: The purposes of this study were to find out the intensity of magnetic field where magnetism in the titanium implant specimen inserted into the bone could affect the bone formation, and to discover the possibility of clinical application in the areas of dental implants and bone grafts. Material and method: Ten adult male rabbits(mean BW 2Kg) were used in this study. Titanium implant specimens were surgically implanted on the mesial side of the tibia of rabbits. Neodymium magnets(Magnedisc 500, Aichi Steel Corp. Japan) were placed into the implants of experimental group except control group, just after placement of the titanium implants. At 2, 4 and 8 weeks after the surgery, the animals were sacrificed, specimens were obtained and stained with Hematoxylin-Eosin for light microscopic evaluation and histomorphometric analysis. Conclusion : The results were as follows: 1. In radiographic findings, increased radiopacity downward from crestal bone was observed along the titanium implant specimen at experimental period passed by 2, 4, and 8 weeks in both control and experimental group. 2. In histoiogic findings, increased new bone formation was shown in both control and experimental group through the experiment performed for 2, 4, and 8 weeks. More new bone formation and bone remodeling were shown in experimental group. 3. In histomorphometric analysis, the bone contact ratios were 11.9% for control group and 38.5% for experimental group (p<0.05).

A Light Incident Angle Stimulated Memristor Based on Electrochemical Process on the Surface of Metal Oxide

  • Park, Jin-Ju;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.174-174
    • /
    • 2014
  • Memristor devices are one of the most promising candidate approaches to next-generation memory technologies. Memristive switching phenomena usually rely on repeated electrical resistive switching between non-volatile resistance states in an active material under the application of an electrical stimulus, such as a voltage or current. Recent reports have explored the use of variety of external operating parameters, such as the modulation of an applied magnetic field, temperature, or illumination conditions to activate changes in the memristive switching behaviors. Among these possible choices of signal controlling factors of memristor, photon is particularly attractive because photonic signals are not only easier to reach directly over long distances than electrical signal, but they also efficiently manage the interactions between logic devices without any signal interference. Furthermore, due to the inherent wave characteristics of photons, the facile manipulation of the light ray enables incident light angle controlled memristive switching. So that, in the tautological sense, device orienting position with regard to a photon source determines the occurrence of memristive switching as well. To demonstrate this position controlled memory device functionality, we have fabricated a metal-semiconductor-metal memristive switching nanodevice using ZnO nanorods. Superhydrophobicity employed in this memristor gives rise to illumination direction selectivity as an extra controlling parameter which is important feature in emerging. When light irradiates from a point source in water to the surface treated device, refraction of light ray takes place at the water/air interface because of the optical density differences in two media (water/air). When incident light travels through a higher refractive index medium (water; n=1.33) to lower one (air; n=1), a total reflection occurs for incidence angles over the critical value. Thus, when we watch the submerged NW arrays at the view angles over the critical angle, a mirror-like surface is observed due to the presence of air pocket layer. From this processes, the reversible switching characteristics were verified by modulating the light incident angle between the resistor and memristor.

  • PDF

Measurement of Antioxidant Activities and Phenolic and Flavonoid Contents of the Brown Seaweed Sargassum horneri: Comparison of Supercritical CO2 and Various Solvent Extractions

  • Yin, Shipeng;Woo, Hee-Chul;Choi, Jae-Hyung;Park, Yong-Beom;Chun, Byung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • Seaweed Sargassum horneri extracts were obtained using supercritical carbon dioxide ($SC-CO_2$) and different solvents. $SC-CO_2$ was kept at a temperature of $45^{\circ}C$ and pressure of 250 bar. The flow rate of $CO_2$ (27 g/min) was constant during the entire 2-h extraction period, and ethanol was used as a cosolvent. Six different solvents [acetone, hexane, methanol, ethanol, acetone mix methanol (7:3), and hexane mix ethanol (9:1)] were used for extraction and agitated by magnetic stirring (250 rpm) in the dark at $25^{\circ}C$ for 20 h; the ratio of material to solvent was 1:10 (w/v). Antioxidant properties of S. horneri extracted using $SC-CO_2$ with ethanol and different solvents have shown good activity. The highest activity belongs to $SC-CO_2$ with ethanol extracted oil, showing DPPH, ABTS, total phenolic content, and total flavonoid levels of $68.38{\pm}1.21%$, $83.51{\pm}1.25%$, $0.64{\pm}0.02mg/g$, and $5.57{\pm}0.05mg/g$, respectively. The S. horneri extracts showed a significant correlation between the antioxidant activity and phenolic content. Based on these results, the $SC-CO_2$ extract (ethanol) of the seaweed extract from brown seaweed may be a valuable antioxidant source.

A Main Concepts Analysis of Gravity and Geomagnetics of Earth Science Textbooks in High School (고등학교 지구과학 교과서의 중력 및 지구자기 관련 주요 개념의 분석)

  • Choi, Kwang-Sun;Yang, In-Suk;Lee, Sang-Gyun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.1 no.1
    • /
    • pp.72-84
    • /
    • 2008
  • This study is focused on the main concepts of gravity and geomagnetics which are introduced in the earth science textbooks of high school in 7th curriculum. This study examines the validity and accuracy of the Earth Science textbooks and shows some effective teaching plans by using the latest materials. This study also illustrates the main concepts of gravity and geomagnetics through presenting some effective and practical teaching-learning methods. The results of the study were as follows: First of all, a number of main concepts of six textbooks of high school were selected; the field of gravity, the direction and dimension of gravity, the measurement of gravity, the main reason of gravity anomaly and geoid, earth terrestrial magnetic field, secular variation of goemagnetics. Secondly, most Earth Science textbooks of high school explains the main concepts of the gravity and geomagnetics in similar ways. Those textbooks, however, don't put an emphasis on the essential contents which has been regarded as important thing in terms of the current educational course of study. The high school textbooks also use the material which is too old-fashioned and has some problems of accuracy and validity. Especially, many main concepts of the textbooks and scientific data(such as the direction of gravity, the measurement of gravity, the main reason of gravity anomaly, the use of geoid, secular variation) are different with those of South Korea, In addition, some materials(graphs and diagrams) are very old ones and they don't have authentic information.Finally, Among the various main concepts, some important ideas (the direction of the gravity and the method of measuring gravity, the measurement and use of gravity anomaly, the definition of geoid and secular variation of geomagnetics) should be corrected by showing the latest and authentic materials.

  • PDF

The Study of Donor-Acceptor Chromophores and Diketopyrrolopyrrole(DPP) Analogues (Donor-Acceptor 발색단과 디케토피롤로피롤(DPP) 유도체에 관한 연구)

  • Kim, HunSoo;Kim, SeungHoi;Park, SooYoul
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.141-146
    • /
    • 2016
  • The diketopyrrolopyrrole (DPP) pigment is a bicyclic 8-π-electron system containing two lactam units. Typical DPP derivative pigments have melting points of over 350°C and very low solubility in most solvents, and show absorption in the visible region with a molar extinction coefficient of 33,000 dm2mol−1 and strong photoluminescence with maxima in the range 500–600 nm. X-ray structure analyses of DPP show that the whole molecule is almost in one plane. The phenyl rings are twisted out of the heterocyclic plane and the intermolecular hydrogen bonding between neighboring lactam NH and carbonyl units influences the structure of the DPP pigment in the solid state. In this study, mono-N-alkylation and mono-N-arylation were undertaken for Pigment Red 264 or Pigment Orange 73 with alkyl halide and aryl halide, respectively, in the presence of sodium tert-butoxide as a base catalyst to improve the solubility of DPP pigments and their application as CO2 indicators. The synthetic yield was in the range 11–88%. The indicator dyes are highly soluble in organic solvents and shows pH-dependent absorption (λmax 501 and 572 nm for the protonated and deprotonated forms, respectively) and emission (λmax 524 and 605 nm for the protonated and deprotonated forms, respectively) spectra. The mono-N-alkylated and mono-N-arylated DPP pigment was identified by 1H-NMR (1H-Nuclear Magnetic Resonance Spectrometer), FT-IR (Fourier Transform Infrared Spectroscopy), and MS (Mass Spectrometry). According to the results of color and hue properties obtained by a color matching analyzer, the synthesized DPP pigment material can be used as a CO2 indicator.

Preliminery study of waveform control in ERW process (전기저항용접의 파형제어에 관한 기초연구)

  • Cho, Min-Hyun;Kim, Dong-Chul;Kang, Mun-Jin;Eun, Seung-Soo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.32-32
    • /
    • 2009
  • Electric Resistance Welding (ERW) process is the most efficient process to manufacture the linepipe. To develop the high performance ERW linepipe using the high strength and the high alloy steels, the modulation of input power waveform such as sinusoidal waveform is introduced because the conventional ERW technology is not sufficient enough to produce the high quality linepipe due to its strength and high alloy contents (high Ceq). In this article, the material used for the experiment was API X60 with 8.2mm thickness, and ERW simulator at POSCO was used to develop a waveform control system for the power modulation. The frequency of power modulation was varied from 50Hz to 150Hz with the fixed amplitude of ${\pm}2%$ power. The non-modulated power input and the modulated power input cases are conducted to demonstrate the variation of the narrow gap length and the arcing frequency due to power modulation. From results of the non-modulated power input case, the excessive power causes the longer narrow gap length and the low arcing frequency due to the large heat input and the strong electro magnetic force that increase the weld defect. On the contrary, the small narrow gap length and the high arcing frequency reduce the weld defect. After modulating the power input with 50Hz and 100Hz at the fixed power, the arcing frequency increases, but the narrow gap length does not change much. The high arcing frequency prevents the formation of weld defect because the sweeping frequently cleans the oxides on the narrow gap edges. As a result, the manufacturing window can be expanded by the power modulation that provides the stable ERW process for the quality improvement of the linepipe made from the high strength/high alloy steels.

  • PDF

Superconducting Properties of in situ Formed Multifilamentary Cu - Nb3Sn Composites and the Effects of Ti Addition on the Superconducting Properties (I) (In situ 법에 의한 Cu-Nb3Sn 복합재료선재의 초전도특성과 이에 미치는 Ti의 영향(I))

  • Park, H.S.;Suh, S.J.;Lee, U.D.;Ahn, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.1
    • /
    • pp.17-25
    • /
    • 1993
  • The Cu - $Nb_3Sn$ composites wire as a superconducting material was prepared by in situ method as follow: Cu - 15wt.% Nb alloys which were melted in a high -frequency induction furnace and casted in bar were cold-worked up to the final diameter of 0.24 mm, electroplated with Sn, pre-treated in two steps and then diffused at $550{\sim}650^{\circ}C$ for 24 ~ 96 hrs. The overall $J_c$ and $T_c$ of the specimens were measured by the four point-probe method at 10 K in the magnetic field of 0 Tesla. The overall $J_c$ of the composites wire which diffused at $550^{\circ}C$ after pre-treating in two steps were generally higher than those of the wire at either $600^{\circ}C$ or $650^{\circ}C$. For the specimens diffused at $550^{\circ}C$, the overall $J_c$ were increased until 72 hrs. of diffusion time and then decreased. However, in case of diffusion at $600^{\circ}C$ and $650^{\circ}C$, the overall $J_c$ were gradually decreased from the beginning. The maximum overall $J_c$ obtained in this experiment was $1.3{\times}10^4\;A/cm^2$, which was measured for the specimen diffused at $550^{\circ}C$ for 72 hrs. When the specimens were diffused at $550^{\circ}C$ for 72 hrs, after pre-treating, the measured critical temperature, $T_c$ was 16.19 K. Similar $T_c$ value were obtained in other specimens regardless of diffusion time and temperature.

  • PDF