• 제목/요약/키워드: Magnetic flow

검색결과 778건 처리시간 0.031초

자기 펄스 발생기의 연결 도체 설계에 관한 연구 (A Study on the Design of Branch Conductor in the Magnetic Pulse Generator)

  • 서주하
    • 산업기술연구
    • /
    • 제9권
    • /
    • pp.101-107
    • /
    • 1989
  • The magnetic forming system must be able to store very important electric energy, several tens kilojoules, and flow this energy through the forming coil within some hundreds microseconds. So several hundreds kiloamperes of current can flow through the branch conductor. For the good performance of this type of machine, internal impedance must be minimized. By the computation of distribution of current inside the conductors using integral equation method, we can obtain the inductance and resistance of some dispositions of branch conductors and by comparison obtain some principles for the design of branch conductors in the high power magnetic pulse generator.

  • PDF

절삭 반경에 따른 U-type 유로 형상의 버 제거율에 관한 연구 (The Study on Burr Removal Rate Along the Cutting Radial Distance in U-type Flow Channel)

  • 손출배;이정희;곽재섭
    • 한국기계가공학회지
    • /
    • 제18권7호
    • /
    • pp.8-13
    • /
    • 2019
  • As increasing demand for precise machining in advanced disciplines, especially in semi-conductor, aeronautical and automotive industries, the magnetic abrasive deburring(MAD) which is able to eliminate micro-sized burr on complex surface in less time has drawn the attention in the last decades. However, the performance of MAD is subject to shape and size of a tool. Therefore, this study aim to identify deburring behavior of MAD in U-type flow channel by measuring the length rate of burr removal in radial distance of the cylindrical tool under four process factors. In order to evaluate the deburring effect of MAD on the surface, finishing regions are divided based on center of the circular cutting tool. As a results, it was defined that the amount of burr removal in a downward direction moving toward flow channel from the top surface was higher than upward direction. This is because the magnetic abrasives were detached from magnetic lines of force due to geometrical shape.

해상도 향상을 위한 4.7 T 자기공명유속계 용 솔레노이드 RF 코일 개발 (Development of Solenoid RF coil for 4.7 T Magnetic Resonance Velocimeter to Improve Resolution)

  • 양병권;조지현;송시몬
    • 한국가시화정보학회지
    • /
    • 제14권2호
    • /
    • pp.40-45
    • /
    • 2016
  • Magnetic resonance velocimeter (MRV) is a powerful tool to non-invasively measure the velocity of a fluid flow in various fields ranging from medicine to engineering. However, since the demands for accurate measurement in the solid/liquid interface for cardiovascular diseases and porous media increase, the improvement of spatial resolution is required. In this study, a solenoid RF coil is developed for high spatial resolution measurement. The signal-to-noise ratio in solenoid RF coil is increased seventeen times better than that in commercial coil. Moreover, the velocity distribution of Hagen-Poiseuille flow is measured with in-plane resolution of $36{\mu}m$ by $36{\mu}m$ and the accuracy of the measured velocity is compared with theoretical distribution of the laminar flow. Flow rate calculated by MRV is estimated with the flow rate injected by syringe pump.

Heat transfer enhancement in gas tungsten arc welding using azimuthal magnetic fields generated by external current

  • Kim, Yiseul;Lee, Jaewook;Liu, Xiaolong;Lee, Boyoung;Chang, Yunlong
    • Coupled systems mechanics
    • /
    • 제6권2호
    • /
    • pp.113-125
    • /
    • 2017
  • This paper proposes the idea to enhance the heat transfer in Gas Tungsten Arc Welding (GTAW) by using the azimuthal magnetic field. The azimuthal magnetic field generated by the external currents makes the Lorentz force stronger, and consequently improves the heat transfer by the faster flow movement. The enhanced heat transfer might improve the welding performance by increasing the temperature at the workpiece. To validate the proposed idea, a two-dimensional axi-symmetric model of GTAW is built, and the multiphysics simulation of GTAW is carried out. As the analysis result, the distributions of electric current, electromagnetic fields, arc flow velocity, and temperature are investigated. Then, the proposed idea for heat transfer enhancement is validated by comparing the Lorentz force, flow velocity, and temperature distribution with and without azimuthal magnetic fields.

Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects

  • Esmaeili, Hemat Ali;Khaki, Mehran;Abbasi, Morteza
    • Structural Engineering and Mechanics
    • /
    • 제68권3호
    • /
    • pp.359-368
    • /
    • 2018
  • This paper deals with the dynamic stability of nanocomposite pipes conveying pulsating ferrofluid. The pipe is reinforced by carbon nanotubes (CNTs) where the agglomeration of CNTs are considered based on Mori-Tanaka model. Due to the existence of CNTs and ferrofluid flow, the structure and fluid are subjected to axial magnetic field. Based on Navier-Stokes equation and considering the body forced induced by magnetic field, the external force of fluid to the pipe is derived. For mathematical modeling of the pipe, the first order shear deformation theory (FSDT) is used where the energy method and Hamilton's principle are used for obtaining the motion equations. Using harmonic differential quadrature method (HDQM) and Bolotin's method, the motion equations are solved for calculating the excitation frequency and dynamic instability region (DIR) of the structure. The influences of different parameters such as volume fraction and agglomeration of CNTs, magnetic field, structural damping, viscoelastic medium, fluid velocity and boundary conditions are shown on the DIR of the structure. Results show that with considering agglomeration of CNTs, the DIR shifts to the lower excitation frequencies. In addition, the DIR of the structure will be happened at higher excitation frequencies with increasing the magnetic field.

Czochralski 단결정 성장특성제어를 위한 자장형태에 관한 연구 (Effect of Applied Magnetic Fields on Czochralski Single Crystal Growth)

  • 김창녕;김경훈
    • 한국결정성장학회지
    • /
    • 제3권1호
    • /
    • pp.18-30
    • /
    • 1993
  • 균일한 자장과 비균일한 자장이 도가니에 가하여졌을 때의 Czochralski유동장이 수치적으로 해석되었다. 여기에서 부력의 효과, thermocapillarity 효과, 원심력의 효과, 자장의 효과등이 Czochralski유동장을 지배하고 있다. 자오면에서의 속도성분과 회전방향의 속도성분이 구하여졌으며 온도, 전류의 흐름 등이 해석되었다. 균일한 자장의 경우에 세기가 증가하면 모든 속도성분이 작아지고 있으며 결정표면 아래에서 회전방향으로의 전류의 세기가 증가한다. 불균일한 자장의 경우에는 자장의 불균일성이 증가하면 자오면에서의 평면유동은 억제되는 반면 회전방향의 속도성분은 더 증가하게 된다. 이와 같은 여러 형태의 자장의 영향아래에서의 Czochralski 유동장에 대한 이해는 도가니(Crucible)안의 용질 및 불순물의 농도에 관한 거동을 연구할 수 있는 기초를 제공하고 있다.

  • PDF

Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.869-876
    • /
    • 2018
  • The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of $6cm^3/s$ and a developed pressure of 1.5 MPa at a temperature of $200^{\circ}C$ was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a $Sm_2Co_{17}$ permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields.

UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN THE PRESENCE OF UNIFORM SUCTION AND INJECTION

  • Attia Hazem A.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권1호
    • /
    • pp.1-10
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the velocity and temperature distributions is examined.

  • PDF

Cusp 자장이 걸려있는 초크랄스키 실리콘 단결정성장에서 유동장의 종횡비에 따라 부력과 열모세관 현상이 용융물질의 유동과 물질전달에 미치는 영향 (Effect of buoyancy and thermocapillarity on the melt motion and mass transfer for different aspect ratio of flow field in magnetic Czochralski crystal growth of silicon)

  • 김창녕
    • 한국결정성장학회지
    • /
    • 제10권3호
    • /
    • pp.177-184
    • /
    • 2000
  • 약한 cusp 자장이 가하여진 Czochralski실리콘 단결정 성장에서 유동장의 종횡비에 따라 부력과 열모세관 현상이 용융물질의 유동과 물질(산소)전달에 미치는 영향이 수치적인 방법으로 연구되었다. 실리콘 단결정 성장이 진행됨에 따라 도가니안의 용융물질의 깊이가 즐어들어 유동장의 종횡비가 감소하고, 이에 따라 현존하는 유동장에 작용하는 자장의 상대적인 형태가 변화하므로 유동의 형태가 계속 변화한다. 유동장 내부에서 자유표면으로 접근하여 Marangoni 대류를 구성하는 용융물질의 흐름(열모세관 현상)과 함께 도가니 벽 근처의 자유표면 바로 아래에서 순환류가 발생하는데, 이 순환류의 존재로 인하여 부력의 효과가 “전반적으로”나타나지 않고 도리어 “국소적으로”나타나는 특성을 갖는다. 종횡비가 작아질수록 유동장의 대부분에서 자장의 반경방향 성분이 축방향 성분보다 우세하여 용융물질의 유동은 횡방향 성분(수평성분)이 현저해지므로 자오면에서의 온도분포는 점차 반경방향에 의존하는 특성을 갖게 된다 종횡비가 작아질수록 결정의 가장자리에서 온도구배가 작아지며 따라서 열모세관 현상포 약화된다 또 이때 결정주위의 산소의 농도가 작아지며 따라서 흡수되는 산소의 양도 작아진다.

  • PDF

최적 요크를 갖는 자기변형 그레이팅을 이용한 고출력 주파수 튜닝 평판 SH 파 발생 (Magnetostrictive Grating with an Optimal Yoke for Generating High-Output Frequency-Tuned SH Waves in a Plate)

  • 김우철;김익규;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.71-74
    • /
    • 2007
  • The objective of this presentation is to introduce a recent development of a magnetostrictive grating technique using an optimal yoke to efficiently generate and measure SH (Shear-Horizontal) waves in a plate. Gratings are effective means to generate frequency-tuned waves, but the gap between magnetostrictive gratings inevitably obstructs magnetic flow. Because magnetic field is the main physical quantity to actuate and sense ultrasonic waves, the transducer performance is most significantly influenced by the magnetic field distribution in the strips. Thus, wave transduction efficiency can be substantially improved if better magnetic flow is formed in the strips. To improve the efficiency, the topology optimization method was used to determine an optimal yoke configuration. A series of experiments on an aluminum plate were conducted using a grating with and without the designed yoke; when the yoke was used, the signal outputs increased up to 60 %.

  • PDF