• Title/Summary/Keyword: Magnetic field intensity

Search Result 339, Processing Time 0.026 seconds

Magnetic Field Sensor by Using Superconductor (초전도 자기 검출소자)

  • 이상헌
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.86-88
    • /
    • 2002
  • The relationship between electrical properties of superconductor and externally allied magnetic field was studied to develop a magnetic field polarity sensor. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the material by the external magnetic field. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive ta the external magnetic field and showed different responses depending on the direction of the magnetic field. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Measurement of Magnetic Field Generated by the Operations of Electric Appliance (전기기구의 운전에 의하여 발생되는 자계의 측정)

  • 이복희;길경석;박형기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.1001-1009
    • /
    • 1994
  • The present paper deals with a new developed sensor for measuring the time-varying magnetic fields and describes the experimental results of trasient magnetic field that takes place during the operations of electric appliance. The operation principle of the self-integrating magnetic field sensor by using coaxial cable is analyzed and a calibration investigation is carried out. The frequency bandwidth of the magnetic field measurement system is from 40 Hz to about 300 kHz. The magnetic field induced by the starting and/or operation of electric appliance mainly includes the odd harmonics such as the third, the fifth and the seventh harmonics. The magnetic field intensity caused during the operation of ultrasonic washer is inversely proportional to distance, this correspodns to induction component. As a result, it was known that the odd harmonics of magnetic field in the desing of electromagnetic shield employed for protecting electronic circuit and control devices have to be considered.

  • PDF

Effects of Magnetic Field Intensities for Various Lengths of Time on Orientation of Fowl Spermatozoa

  • Pham, Du Ngoc;Shinjo, Akihisa;Sunagawa, Katsunori
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1367-1373
    • /
    • 2001
  • This study used fowl sperm from three White Leghom rooster reared at our laboratory. Semen samples were exposed to the magnetic field strengths of from 650 to 5700 Gauss for one. two, or three days to investigate the influence of magnetic field on the orientation of fowl spermatozoa. Fowl spermatozoa were found to orient with their long axis of heads perpendicular to the magnetic field direction. The fowl spermatozoa were initially influenced when magnetic field intensities were from 650 to 5700 Gauss and the highest values (70.67, 72.49 and 71.79%) were found in the 5700 Gauss treatment at one, two, and three days exposure, respectively. Although percentages of the perpendicular oriented fowl spermatozoa increased along with the enhancement of the magnetic field intensity, the degree of orientation was only significantly higher in the treatments having the magnetic field strength from 1500 to 5700 Gauss than that in the control treatment at all exposure time. In addition, the experimental results also showed that the percentages of all orientational types of fowl spermatozoa (perpendicular category including upward perpendicular and downward perpendicular and parallel type consisting of leftward parallel and rightward parallel) in all treatments tended to be stable during exposure time. From the results of this study. it is suggested that (1) the diamagnetic anisotropy of the inside structural components of fowl spermatozoa induce them to orient perpendicular to the magnetic field direction, (2) the degree of orientation increased according to the enhancement of magnetic field strengths, (3) fowl spermatozoa had not an high sensitivity to the magnetic field, and the level of perpendicular orientation of fowl spermatozoa in this study is nearly similar to that of cattle sperm in the study of Suga et al. (2000).

A Numerical Analysis of Molten Steel Flow Under Applied Magnetic Fields in Continuous Casting

  • Yoon, Teuk-Myo;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2010-2018
    • /
    • 2003
  • Although continuous casting process has highly developed, there still remain many problems to be considered. Specifically, two vortex flows resulting from impingement against narrow walls make a flow field unstable in a mold, and it is directly related to internal and external defects of steel products. To cope with this instability, EMBR (Electromagnetic Brake Ruler) technique has been lately studied for the stability of molten steel flow, and it is revealed that molten steel flow in a mold can be controlled with applied magnetic field. However, it is still difficult to clarify flow pattern in an EMBR caster due to complex correlations among variables such as geometric factors, casting conditions, and the place and the intensity of charged magnetic field. In the present study, flow field in a mold is focused with different conditions of electromagnetic effect. To accurately analyze the case, three dimensional low Reynolds turbulent model and appropriate boundary conditions are chosen. To evaluate the electromagnetic effect in molten steel flow, dimensionless numbers are employed. The results show that the location and the intensity of the applied magnetic field significantly influence the flow pattern. Both impingement and internal flow pattern are changed remarkably with the change of the location of applied magnetic field. It turns out that an insufficient magnetic force yields adverse effect like channeling, and rather lowers the quality of steel product.

Magnetic Properties of Oxide Superconducting Material (산화물 초전도체의 자기적 특성)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.115-118
    • /
    • 2003
  • The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor was changed from zero to a value more than $100\;{\mu}V$ by the applied magnetic field. The change of electrical resistance depended on magnetic field. The sensitivity of this sensor was $2.9\;{\Omega}/T$. The sensing limit was about $1.5{\times}10^{-5}\;T$. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Magnetic Sensor by Using Magnetic Effect in YBaCuO Superconductor

  • 이상헌;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.69-71
    • /
    • 2003
  • The magnetic field sensor was fabricated with superconducting ceramics of YBaCuO system. The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually the voltage drop across the sensor was changed from zero to a value more than 100 $mutextrm{V}$ by the applied magnetic field. The change in electrical resistance depended on magnetic field. The sensitivity of this sensor was 2.9 $\Omega$/T. The sensing limit was about $1.5\times$10$^{-5}$. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

The Influence of Magnetic Field on Diffusion Flames: Role of Magnetic Field On/Off Frequency and Duty Ratio (자기장 분포가 확산화염의 연소특성에 미치는 영향: 자기장 On/Off 주기와 Duty Ratio의 역할)

  • Lee, Won-Nam;Bae, Seung-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.58-65
    • /
    • 2012
  • The influence of magnetic field on propane and acetylene diffusion flames have been experimentally investigated using an electromagnetic system. Periodically induced magnetic field having various frequencies and duty ratios was established in square wave form. The maximum intensity and gradient of magnetic field were 1.3 T and 0.27 T/mm, respectively. The width of a propane flame was reduced up to 4.5% and the brightness was enhanced up to 25% when the magnetic field was induced. The soot emission from an acetylene flame was ceased when magnetic field was induced. The alteration of flow field, which is due to the paramagnetic characteristics of oxygen molecule, is most likely to be responsible for the change in flame size and brightness. The effect of magnetic field on diffusion flames, which competes with the gravitational effect, was more apparent from a smaller size flame. The magnetic field effect, therefore, could be important under microgravity conditions. Since the time required to alter the flow field must be finite, the magnetic field effect is likely to be less significant for a periodically oscillating magnetic field at a high frequency or having a small duty ratio.

A Study on the Variation of Magnetic Field Intensity and Short Current by Coating Material of Spray in AF Track Circuits (AF궤도회로에서 코팅재에 의한 자계의 세기 및 단락전류 변화에 대한 연구)

  • Kim, Min-Seok;Oh, Sea-Hwa;Park, Yong-Gul;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.552-559
    • /
    • 2011
  • There is a method for offering continuous information by AF track circuits. Magnetic fields are formed by current through rails in the AF track circuit systems. So, the continuous information is received by the magnetic fields on a on-board antenna. Coating materials of spray on rails are researched to decrease defects such as head check, shelling, corrugation, squats and so on in Germany. Currently, a coating method of rail construction is proposed by using the ceramics in Korea. When deciding physical characteristic of the coating material of spray, researches are required about variation of flux density and resistivity by using the coating material of spray. In case that the flux density is much lower than existing value, the information for train control is not transmitted to the on-board antenna. In this paper, inductance on rails is calculated and a model is presented about variation of the magnetic field intensity and resistivity in the AF track circuit. Standard permeability of the coating material of spray is proposed. Also, standard resistivity of the coating material of spray is presented by analyzing short current.

Telemetering System of Extremely Low Frequency Magnetic Field Intensity (극저주파 자계 세기를 원격 측정하는 장치)

  • Yoo, Ho-Sang;Wang, Jong-Uk;Seo, Geun-Mee;Gimm, Yoon-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.553-562
    • /
    • 2007
  • In this paper, we designed and implemented the system for telemetering ELF(Extremely Low Frequency) magnetic field intensity. The magnetic field measurement system used a 3-axis magnetic field sensor to measure the magnetic field with isotropy and the equalizer to compensate the frequency characteristic in band. By multiplexing three output signals of the magnetic field sensor in time domain, we got the uniform gain and frequency characteristic among three axes. This system was designed that the magnetic field measurement level range was $0.01{\sim}10.0\;uT$ and the measurement frequency band was $40{\sim}180\;Hz$. The control system would access to the magnetic field measurement system with RF and the maximum access distance was 1.0 km. We confirmed that the measurement level error of the fabricated system was within 5 %. The fabricated system was installed to a golf practice range where a high voltage power transmission line was crossed.

A Study on Characteristics and Safety Criteria for Human Body in ELF Electric and Magnetic Fields (ELF 전자계 특성 및 인체 안전기준에 관한 연구)

  • 김두현;김상철
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.3
    • /
    • pp.34-43
    • /
    • 1993
  • This paper presents a study on the characteristics and safety criteria for human body in ELF (Extremely Low Frequency : 50-60Hz) electric and magnetic fields. Many researches for ELF electric and magnetic fields, which are developed in the past, are studied and analyzed In this paper. In order to estabilish the safety criteria for human body in the field, the field intensity, induced current and voltage are calculated by the electrostatic field approach which is far simpler than the electromagnetic field one based on Maxwell equation. The method is applied to the 345 KV transmission line system In operation and 765 KV system under consideration. According to the results, the maximum value of field intensity, 6.8627KV/m, is evaluated at the location which is 14m away from transmission line. As the safety criteria value by the abroad researches asserting that the human can detect the Induced current in 6KV/m and above, 5KV/m and 7KV/m are recommended at residence area and nonresidence area, respectively.

  • PDF