• 제목/요약/키워드: Magnetic distribution

검색결과 1,297건 처리시간 0.028초

유한요소법에 의한 삼상유도전동기의 자속분포해석에 관한 연구 (A study on the magnetic flux distribution of 3-phase 4-pole induction motor by finite element method)

  • 임달호;현동석;임태빈
    • 전기의세계
    • /
    • 제30권4호
    • /
    • pp.219-226
    • /
    • 1981
  • The magnetic field distribution in saturable iron part of electromagnetic energy conversion divices is defined by the nonlinear quasi-Poisson enquation that is described the electromagnetic field characteristics and satisfied the natural boundary condition. The solution of this equation is obtained by minimizing an energy functional by means of trial function that defined in triangular subregion of two-dimensional field region. As a result, the accuracy of the machine design is increased by use of its solution. In this respect, this study is developed the basic theory to analyze the magnetic flux distribution in saturable iron part and air gap of induction motor that its secondary part is short circuit by the variational principle, the minimized theory of energy functional, the application of F.E.M., and treatment of computer. As theoritical data compared with the practics, the validity of the theory in this study is supported by experimental findings.

  • PDF

Effect of Preparation on Structure and Magnetic Properties of ZnFe2O4

  • Niyaifar, Mohammad
    • Journal of Magnetics
    • /
    • 제19권2호
    • /
    • pp.101-105
    • /
    • 2014
  • In this work, Zinc ferrite nanoparticles have been prepared by various methods, conventional (ZC), mechanochemical processing (ZM) and Sol-Gel (ZS) method, to compare their structural and magnetic properties. The cation distribution obtained from XRD shows the degrees of inversions are 4%, 14.8%, and 16.4% from the normal $ZnFe_2O_4$ structure. Fourier transform infrared spectroscopy (FT-IR) confirms changes in cation distribution of $ZnFe_2O_4$ fabricated by sol-gel and mechanochemical processing. The $^{57}Fe$ M$\ddot{o}$ssbauer spectra of the samples were recorded at room temperature. The spectra exhibit a line broadening. The magnetic properties of the samples were studied by vibration sample magnetometer (VSM) at room temperature and the results show that the sample ZM has ferrimagnetic behaviour.

3차원 등가자기회로망법을 이용한 영구자석의 자화분포에 따른 BLDC 모터의 코깅 토오크 해석 (Analysis of Cogging Torque in BLDC Motor Taking into account Magnetization Distribution Using 3DEMCN)

  • 황동윤;허진;윤상백;홍정표;현동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.159-161
    • /
    • 1997
  • This paper presents a method of reducing cogging torque and improving average torque by changing the dead zone angle of trapezoidal magnetization distribution of rotor magnet in ring type. Because brushless d.c. motor has 3D shape of overhang, 3D analysis should be used for computation of its magnet field. In this paper, Three Dimensional Equivalent Magnetic Circuit Network method (3DEMCN) which can calculate an accurate 3D magnetic field has been introduced. The method has an advantage that nonlinear magnetic phenomena can be considered and the cogging torque analyses requesting the rotation of the rotor can be performed by the variation of magnetization distribution without remesh.

  • PDF

Leakage Flux Distribution in the Simulated Environment

  • Kim, Chung-Hyeok;Kim, Tag-Yong;Oh, Yong-Cheul
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.401-405
    • /
    • 2012
  • Current research about voltage leakage involves investigation of the effects of leaked voltage and current on humans through simulated environments and dummies. Electrocution results from leaked current when electricity flows through the body as a result of potential difference. Research that analyzes actual electrocution is insufficient because of the danger from leaked voltage present in the leakage area. This thesis analyzes magnetic flux density from current around a leak to investigate the distribution of current. The authors used a simulated environment to investigate electrocution accidents that frequently occur during floods through leakage along metal surfaces, and evaluated the distribution of leaked magnetic flux.

초등학교 학생들의 자기장 개념 분석과 인지양식의 차이에 따른 대안실험의 효과 (The Effect of an Alternative Experiment for the Formation of Student's Conceptions about the Magnetic Fields of a Permanent Magnet by Cognitive Styles)

  • 오광택;윤석주
    • 한국자기학회지
    • /
    • 제26권5호
    • /
    • pp.159-167
    • /
    • 2016
  • 초등학교 6학년 과학교과 영구자석 주위의 자기장에 대한 학습에서 나타나는 학생들의 자기장 개념 유형을 조사하였다. 그리고 학생들의 영구자석 주위의 자기장에 대한 오개념 개선을 위한 나침반을 사용하는 대안실험을 제안하였으며 학생들의 인지양식에 따른 효과를 비교하였다. 영구자석 주위에 철가루를 뿌려 관찰한 자기장에 대해 부분 분포 모형, 극 분리 모형, 균질 분포 모형, 장 모형의 4가지 개념 모형이 나타났으며, 영구자석과 나침반을 이용하여 자기장을 관찰한 실험에서는 철가루 실험에서 나타났던 자기장 모형들이 연속, 변형, 복잡화되었는데 극 분리 모형, 복합 균질 분포 모형, 장 모형의 3가지 자기장 개념 모형으로 나타났다. 대안실험을 통해서 올바른 자기장 개념의 형성 비율이 장의존적인 학생들에게 유의미하게 높은 것으로 나타났다.

Development of volume reduction method of cesium contaminated soil with magnetic separation

  • Yukumatsu, Kazuki;Nomura, Naoki;Mishima, Fumihito;Akiyama, Yoko;Nishijima, Shigehiro
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권1호
    • /
    • pp.10-13
    • /
    • 2016
  • In this study, we developed a new volume reduction technique for cesium contaminated soil by magnetic separation. Cs in soil is mainly adsorbed on clay which is the smallest particle constituent in the soil, especially on paramagnetic 2:1 type clay minerals which strongly adsorb and fix Cs. Thus selective separation of 2:1 type clay with a superconducting magnet could enable to reduce the volume of Cs contaminated soil. The 2:1 type clay particles exist in various particle sizes in the soil, which leads that magnetic force and Cs adsorption quantity depend on their particle size. Accordingly, we examined magnetic separation conditions for efficient separation of 2:1 type clay considering their particle size distribution. First, the separation rate of 2:1 type clay for each particle size was calculated by particle trajectory simulation, because magnetic separation rate largely depends on the objective size. According to the calculation, 73 and 89 % of 2:1 type clay could be separated at 2 and 7 T, respectively. Moreover we calculated dose reduction rate on the basis of the result of particle trajectory simulation. It was indicated that 17 and 51 % of dose reduction would be possible at 2 and 7 T, respectively. The difference of dose reduction rate at 2 T and 7 T was found to be separated a fine particle. It was shown that magnetic separation considering particle size distribution would contribute to the volume reduction of contaminated soil.

Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load

  • Esen, Ismail;Alazwari, Mashhour A.;Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.805-826
    • /
    • 2022
  • The free and live load-forced vibration behaviour of porous functionally graded (PFG) higher order nanobeams in the thermal and magnetic fields is investigated comprehensively through this work in the framework of nonlocal strain gradient theory (NLSGT). The porosity effects on the dynamic behaviour of FG nanobeams is investigated using four different porosity distribution models. These models are exploited; uniform, symmetrical, condensed upward, and condensed downward distributions. The material characteristics gradation in the thickness direction is estimated using the power-law. The magnetic field effect is incorporated using Maxwell's equations. The third order shear deformation beam theory is adopted to incorporate the shear deformation effect. The Hamilton principle is adopted to derive the coupled thermomagnetic dynamic equations of motion of the whole system and the associated boundary conditions. Navier method is used to derive the analytical solution of the governing equations. The developed methodology is verified and compared with the available results in the literature and good agreement is observed. Parametric studies are conducted to show effects of porosity parameter; porosity distribution, temperature rise, magnetic field intensity, material gradation index, non-classical parameters, and the applied moving load velocity on the vibration behavior of nanobeams. It has been showed that all the analyzed conditions have significant effects on the dynamic behavior of the nanobeams. Additionally, it has been observed that the negative effects of moving load, porosity and thermal load on the nanobeam dynamics can be reduced by the effect of the force induced from the directed magnetic field or can be kept within certain desired design limits by controlling the intensity of the magnetic field.

Magnetic field distribution in steel objects with different properties of hardened layer

  • Byzov, A.V.;Ksenofontov, D.G.;Kostin, V.N.;Vasilenko, O.N.
    • Advances in Computational Design
    • /
    • 제7권1호
    • /
    • pp.57-68
    • /
    • 2022
  • A simulation study of the distribution of magnetic flux induced by a U-shaped electromagnet into a two-layer massive object with variations in the depth and properties of the surface layer has been carried out. It has been established that the hardened surface layer "pushes" the magnetic flux into the bulk of the magnetized object and the magnetic flux penetration depth monotonically increases with increasing thickness of the hardened layer. A change in the thickness and magnetic properties of the surface layer leads to a redistribution of magnetic fluxes passing between the poles of the electromagnet along with the layer and the bulk of the steel object. In this case, the change in the layer thickness significantly affects the magnitude of the tangential component of the field on the surface of the object in the interpolar space, and the change in the properties of the layer affects the magnitude of the magnetic flux in the magnetic "transducer-object" circuit. This difference in magnetic parameters can be used for selective testing of the surface hardening quality. It has been shown that the hardened layer pushes the magnetic flux into the depth of the magnetized object. The nominal depth of penetration of the flow monotonically increases with an increase in the thickness of the hardened layer.

A Magnetic Field Separation Technique for a Scaled Model Ship through an Earth's Magnetic Field Simulator

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jung, Woo-Jin
    • Journal of Magnetics
    • /
    • 제20권1호
    • /
    • pp.62-68
    • /
    • 2015
  • This paper presents an experimental technique to accurately separate a permanent magnetic field and an induced one from the total magnetic fields generated by a steel ship, through compensating for the Earth's magnetic field. To achieve this, an Earth's magnetic field simulator was constructed at a non-magnetic laboratory, and the field separation technique was developed, which consisted of five stages. The proposed method was tested with a scaled model ship, and its permanent and induced magnetic fields were successfully extracted from the magnetic field created by the ship. Finally, based on the separated permanent magnetic field data, the permanent magnetization distribution on the hull was predicted by solving an inverse problem. Accordingly, the permanent magnetic fields generated by the ship can easily be calculated at any depth of water.

Analytical Calculation of Air Gap Magnetic Field Distribution in Magnetic Geared Motors

  • Shi, Hyoseok;Niguchi, Noboru;Hirata, Katsuhiro
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.794-802
    • /
    • 2019
  • Magnetic geared motors are driven using the same operating principle as conventional synchronous motors in which a magnetic gear is embedded. The magnetic geared motor is structurally similar to a magnetic gear. However, by applying currents to the stator coil, the high-speed rotor is rotated by a magnetic field and the low-speed rotor is rotated according to the gear ratio. In this paper, the operational principle of a magnetic geared motor and the magnetic flux density in its inner and outer air gaps are described. Then the magnetic flux density in the two air gaps is used to express a method for calculating the electrical and mechanical output. Results obtained with the analytical calculation method are compared with those of the finite element analysis. Finally, a prototype is used to verify the results of the analytical calculation and FEA.