Yongmin Chang;Bong Soo Han;Bong Seok Kang;Kyungnyeo Jeon;Kyungsoo Bae;Yong-Sun Kim;Duk-Sik Kang
Investigative Magnetic Resonance Imaging
/
v.6
no.2
/
pp.120-128
/
2002
Purpose : To demonstrate that the relaxographic method provides additional information such as the distribution of relaxation times and water content which are poentially applicable to clinical medicine. Materials and Methods : First, the computer simulation was performed with the generated relaxation data to verify the accuracy and reliabilility of the relaxographic method (CONTINI). Secondly, in or der to see how well the CONTIN quantifies and resolves the two different ${T_1}$ environments, we calculated the oil to water peak area ratios and identified peak positions of ${T_1}-distribution$ curve of the phantom solutions, which consist of four centrifugal tubes (10 ml) filled with the compounds of 0, 10, 20, 30% of corn oil and distilled water, using CONTIN. Finally, inversion recovery MR images for a volunteer are acquired for each TI ranged from 40 to 1160 msec with TR/TE=2200/20 msec. From the 3 different ROIs (GM, WM, CSF), CONTIN analysis was performed to obtain the ${T_1}$-distribution curves, which gave peak positions and peak area of each ROI location. Results : The simulation result shows that the errors of peak positions were less in the higher peak (centered ${T_1}=600$ msec) than in the lower peak (centered ${T_1}=150$ msec) for all SNR but the errors of peak areas were larger in the higher peak than in the lower peak. The CONTIN analysis of the measured relaxation data of phantoms revealed two peaks between 20 and 60 msec and between 500 and 700 msec. The analysis gives the peak area ratio as oil 10%: oil 20%: oil 30% = 1:1.3:1.9, which is different from the exact ratio, 1:2:3. For human brain, in ROI 3 (CSF), only one component of -distributions was observed whereas in ROI 1(GM) and in ROI 2 (WM) we observed two components of ${T_1}-distribution$. For the WM and CSF there was great agreement between the observed ${T_1}-relaxation$ times and the reported values. Conclusion : we demonstrated that the relaxographic method provided additional information such as the distribution of relaxation times and water content, which were not available in the routine relaxometry and ${T_1}/{T_2}$ mapping techniques. In addition, these additional information provided by relaxographic analysis may have clinical importance.
Choi, Sunseob;Ha, Dong-Ho;Kang, Myong-Jin;Lee, Jin Hwa;Yoon, Seong Kuk
Investigative Magnetic Resonance Imaging
/
v.17
no.4
/
pp.267-274
/
2013
Purpose : To re-evaluate additional clinical significance of the apparent diffusion coefficient (ADC) map in the inference of infarction stage, authors studied the evolution patterns of the DWI and the ADC map of the brain infarction. Materials and Methods: In 127 patients with cerebral infarctions, including follow-up checks, 199 studies were performed. They were classified as hourly (117 studies)-, daily (108 studies)-, weekly (62 studies)-based groups. The signal intensity (SI) was measured at the core of the infarction and contralateral area with ROI of 0.3 $cm^2$ or more on the images of the DWI and the ADC map, and calculated the ratios of SI and ADC value of the infarction area / contralateral normal area, and compared the patterns of the change according to the evolution. Results: Infarction was detected as early as 1 hour after the attack, and the ratio of SI in the DWI became over than 2 after 12 hours, which showed a plateau until the 6th day. Thereafter, it decreased slowly to 1 on the 30th day, and changed to lower SI than the surrounding brain. The ratio in the ADC map became 0.46 in 24 hours after the attack, and increased slowly to 1 in the 15th day. Thereafter, it became a higher value than the surrounding brain. Overall, the ratio in the ADC map changed earlier than in the DWI, and the ratio curves showed inverse pattern each other according to the evolution of the infarction. Conclusion: The evolution patterns of infarction on the ADC map showed an inverse curve of DWI curve, which means that the ADC value is accurately predictable from DWI, and the ADC map joined with the DWI seems helpful in the determination of subacute infarction between 15 to 30 days.
The spin-rotation constants of the proton and tile fluorine nucleus in C $H_4$, Si $H_4$, Ge $H_4$, C $F_4$, Si $F_4$ and Ge $F_4$ were determined experimentally by the molecular beam magnetic resonance method. From the Hamiltonian and the high field approximation, the quantized energy level is given by the following equation. W $m_{I}$$m_{J}$=- $g_{I}$$m_{I}$H- $g_{J}$$m_{J}$H- $C_{av}$$m_{I}$$m_{J}$, where $c_{av}$ is one third of the trace of the C tensor. In the nuclear resonance experiment, the proton and the fluorine nuclear resonance curves consist of many unresolved lines given by v=- $g_{J}$H- $C_{av}$$m_{I}$, and a Gaussian approximation is made to correlate $c_{av}$ to the experimentally obtained half-width of the resonance curve. In the rotational resonance experiment, the five resonance peaks as predicted by v=- $g_{I}$H- $c_{av}$$m_{I}$, $m_{I}$=0, $\pm$1 and $\pm$2, were all observed. The magnitude of car was determined by measuring the frequency distance between two adjacent peaks. The sign of $c_{av}$ was determined by the side peak suppression technique. The technique is described, and the sign and magnitude of the spin-rotation constant cav are summarized as following: for C $H_4$ -10.3$\pm$0.4tHz(from the rotational resonance), for SiH +3.71$\pm$0.08kHz(from the nuclear resonance), for Ge $H_4$+3.79$\pm$0.13kHz(from the nuclear resonance), for C $F_4$, -6.81$\pm$0.08kHz(from the rotational resonance), for Si $F_4$, -2.46$\pm$0.06kHz(from the rotational resonance), and finally for Ge $F_4$-1.84$\pm$0.04kHz(from the rotational resonance).onal resonance).esonance).
We present petrography, mode and chemistry data for Fe-Ti oxide minerals from the Mesozoic granitoids in South Korea. Magnetites from the Daebo Uurassic) granites are nearly pure $Fe_3O_4$, while those from the Bulgugsa (Cretaceous) granites contain considerable amounts of Mn and Ti. This is probably related to rapid cooling of the Bulgugsa granites compared with slow cooling of Daebo granites, which is supported by geologic relations and hornblende geobarometry results of Cho and Kwon (1994) on the emplacement depth for these granites. The composition of ilmenite does not shew appreciable difference between the Daebo and Bulgugsa granites. However, $Fe_2O_3$ contents are higher for the ilmenites coexisting with magnetite than for those without magnetite. In the temperature vs. oxygen fugacity diagram, the Bulgugsa granites plot near Ni-NiO and QFM buffer curves, although only two samples show greater than the granite solidus temperature. The mode data suggest that both magnetite- and ilmenite-series exist in Daebo and Bulgusa granites from the Kyonggi massif, Ogcheon belt and Youngnam massif, while only magnetite-series exists in Bulgugsa granites from the Kyongsang basin. Many ilmenite-series granites occur in the Ogcheon belt, which might be related to assimilation of carboniferous sediments in the belt. The proportion (44 : 56) between ilmenite- and magnetite-series for the Daebo granites is significantly different from that of Ishihara et al. (1981) who showed, using magnetic susceptibility data, predominance of ilmenite-series (more than 70%) for the Daebo granites, which can be mainly attributed to preference in sampling and to wrong assignment of age for some plutons. We also found magnetite in weakly-magnetized Kanghwa granite which was formerly classified as ilmenite-series by Ishihara et al. (1981). The proportion of ilmenite-series increases in the order of hornblende biotite granite, biotite granite and two mica granite. We conclude from these observations that the ilmeniteseries granites might have originated from contamination of carboniferous crustal material and/or such source material.
One of the applications of geomagnetic paleo-secular variation (PSV) is the age dating of archeological remains (i.e., the archeomagnetic dating technique). This application requires the local model of PSV that reflects non-dipole fields with regional differences. Until now, the tentative Korean paleosecular variation (t-KPSV) calculated based on JPSV (SW Japanese PSV) has been applied as a reference curve for individual archeomagnetic directions in Korea. However, it is less reliable due to regional differences in the non-dipole magnetic field. Here, we present PSV curves for AD 1 to 600, corresponding to the Korean Three Kingdoms (including the Proto Three Kingdoms) Period, using the results of archeomagnetic studies in the Korean Peninsula and published research data. Then we compare our PSV with the global geomagnetic prediction model and t-KPSV. A total of 49 reliable archeomagnetic directional data from 16 regions were compiled for our PSV. In detail, each data showed statistical consistency (N > 6, 𝛼95 < 7.8°, and k > 57.8) and had radiocarbon or archeological ages in the range of AD 1 to 600 years with less than ±200 years error range. The compiled PSV for the initial six centuries (KPSV0.6k) showed declination and inclination in the range of 341.7° to 20.1° and 43.5° to 60.3°, respectively. Compared to the t-KPSV, our curve revealed different variation patterns both in declination and inclination. On the other hand, KPSV0.6k and global geomagnetic prediction models (ARCH3K.1, CALS3K.4, and SED3K.1) revealed consistent variation trends during the first six centennials. In particular, the ARCH3K.1 showed the best fitting with our KPSV0.6k. These results indicate that contribution of the non-dipole field to Korea and Japan is quite different, despite their geographical proximity. Moreover, the compilation of archeomagnetic data from the Korea territory is essential to build a reliable PSV curve for an age dating tool. Lastly, we double-check the reliability of our KPSV0.6k by showing a good fitting of newly acquired age-controlled archeomagnetic data on our curve.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.