• Title/Summary/Keyword: Magnetic composite materials

Search Result 173, Processing Time 0.029 seconds

Fabrication of the (Alnico, Sm-Co) Bonded Magnet and its Magnetic Properties ((알니코, 사마리움-코발트) 본드자석의 제조 및 자기적 특성연구)

  • Kim, Jung-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.988-995
    • /
    • 2010
  • In this study the (Alnico, Sm-Co) bonded magnets were fabricated by mixing the Sm-Co added alnico alloy powders with epoxy resin and binder, appropriately. Also, the hybrid ring magnets of (Alnico, Sm-Co)/Sr-ferrite were fabricated by coupling the Sr-ferrite composite layer with an (Alnico, Sm-Co) magnet. The magnetic properties of (Alnico, Sm-Co) ring magnets were varied with the amount of Sm-Co powders. The addition of Sm-Co powders increased a remanent induction($B_r$) and coercive force($_BH_C$), while decreasing a surface flux density and repulsive distance. The surface flux density and repulsive distance for the (Alnico, Sm-Co) ring magnet increased with a magnetizing voltage up to about 160 V and reached an apparent saturation point. Also, the measurements of temperature and moisture characteristics showed that the surface flux densities of N-S poles and repulsive distance decreased a little within 4% after 10 days passed.

Mechanical and Magnetic Properties of YBCO Superconductor with Bi/CNT Composite and Resin/CNT Impregnation (Bi/CNT 화합물과 Resin/CNT를 보강한 YBCO 초전도체의 기계적, 자기적 특성 변화)

  • Oh, W.S.;Jang, G.E.;Han, Y.H.;Sung, T.H.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.107-110
    • /
    • 2007
  • Bi/CNT composite and resin/CNT were chosen to improve the mechanical properties of $YBa_2Cu_3O_7$(YBCO) superconductor. In order to elucidate the effects of Bi/CNT composite and resin/CNT in YBCO superconductors, melt texture superconductor were impregnated by mixed compound of Bi and CNT into the artificial holes parallel to the c-axis, which were drilled on the YBCO superconductor. Various amount of Bi/CNT and resin/CNT were impregnated to YBCO superconductor with different holes diameters. Typical artificial holes diameters were 0.5, 0.7, and 1.0 mm respectively. Result of three-point bending test measurement, the bending strength with resin/CNT impregnation was improved up to 59.64 MPa as compared with 50.79 MPa of resin/CNT free bulk. Resin/CNT impregnation has been found to be one of the effective ways in improving the mechanical properties of bulk superconductor.

  • PDF

Synthesis and Properties of Nano-sized Ni-Fe Alloy Particle Dispersed ${Al_2}{O_3}$Nanocomposite (나노크기 Ni-Fe 합금입자 분산${Al_2}{O_3}$ 나노복합재료의 합성 및 특성)

  • Nam, Gung-Seok;O, Seung-Tak;Lee, Jae-Seong;Jeong, Yeong-Geun;Kim, Hyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.986-990
    • /
    • 2001
  • An optimum route to fabricate the $A1_2O_3/Fe-Ni$ alloy nanocomposites with sound microstructure and enhanced mechanical properties as well as magnetism was investigated. To prepare homogeneous nanocomposite powders of Fe-Ni alloy and $Al_2O_3$, the solution-chemistry routes using $Al_2O_3 \; Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders were applied. Microstructural observation of the powder mixture revealed that the Fe-Ni alloy particles of about 20 nm in size were homogeneously surrounded $A1_2O_3$, forming nanocomposite powder. The hot-pressed composite showed improved fracture toughness and magnetic response. These results suggest that the synergy materials with an improved mechanical properties and excellent functionality can be fabricated by controlled powder preparation and consolidation processing.

  • PDF

Synthesis and magnetic properties of copper and Ba-ferrite ferromagnetic composites by mechanical alloying (기계적합금화법에 의한 Cu-Ba ferrite 강자성 복합재료의 합성 및 자기적 성질)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • Synthesis of ferromagnetic composite materials for the $Cu-BaFe_{12}O_{19}$ system by mechanical alloying (MA) has been investigated at room temperature. A mixture of copper and barium ferrite with a weight ratio of $Cu:BaFe_{12}O_{19}=4:1$, 3 : 2, 2 : 3 and 1 : 4 was used. It is found that $Cu-BaFe_{12}O_{19}$ composite powders in which $BaFe_{12}O_{19}$ is dispersed in copper matrix are successfully produced by mechanical alloying of $BaFe_{12}O_{19}$ with Cu for 80 min. in all composition. The change in X-ray diffraction patterns and magnetic properties reflects the details for the formation of ferromagnetic metal matrix composite of pure Cu and $BaFe_{12}O_{19}$ during mechanical alloying. Magnetization of $Cu-BaFe_{12}O_{19}$ composite powders gradually increases with increasing the amounts of barium ferrite, whereas coercive force of MA powders gradually decreases due to the refinement of barium ferrite powders with ball milling. However, it can be seen that the coercivity of $Cu-BaFe_{12}O_{19}$ MA composite powders with a weight ratio of $Cu:BaFe_{12}O_{19}=4:1$ and 3 : 2 ball-milled for 80 min. is still high value of 1400 Oe and 1450 Oe, respectively suggesting that the refinement of barium ferrite powders during ball milling process tend to be suppressed due to the ductile copper.

Effects of Annealing Temperature on Electromagnetic Wave Absorption Characteristics in FeCuNbSiB Alloy Flakes/Polymer Composite Sheets (FeCuNbSiB 합금 박편/폴리머 복합 시트의 전자파 흡수 특성에 미치는 자성분말 어닐링 온도의 영향)

  • Noh, Tae-Hwan;Lee, Tae-Gyu
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.5
    • /
    • pp.198-204
    • /
    • 2007
  • The effects of annealing temperature on electromagnetic wave absorption characteristics in $Fe_{73.5}Cu_1Nb_3Si_{15.5}B_7$ (at%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The composite sheet including the magnetic flakes annealed at $425{\sim}475^{\circ}C$ for 1 h exhibited highest power loss in the GHz frequency range as compared with the sheets composed of the alloy flakes annealed at higher temperature than $475^{\circ}C$ or in as-milled state. Moreover the imaginary part of complex permeability had largest value in the GHz frequency range for the sheets including the flakes annealed at $425{\sim}475^{\circ}C$. The large value of power loss of the sheets including the magnetic flakes annealed at $425{\sim}475^{\circ}C$ was attributed to the high imaginary part of the complex permeability. However, because of its large transmission parameter $S_{21}$, the composite sheet having the magnetic flakes annealed at $525^{\circ}C$ showed low power loss.

Static measurement of magnetostriction of FeCoGe/phenol composites (FeCoGe/페놀 복합체의 정적 자기변형 측정)

  • Park, K.I.;Na, S.M.;Shin, K.H.;Lim, S.H.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.577-580
    • /
    • 2003
  • The magnetostriction of FeCoGe/phenol composites, which is one of the magnetostrictive materials, measured at the external magnetic field. The measurement was carried out using the electrical-resistance strain gage, the wheaten's Bridge for eliminating the unnecessary voltage, and the lock-in-amp for signal amplification and noise filtering. When the external magnetic field was applied in the longitudinal the samples, the maximum strain of 120ppm was taken with regard to the 10wt.% phenol composite. This results indicate that the FeCoGe/phenol composites can be useful as an actuator because it has larger stain than the other solid state actuators such as piezo electric materials.

  • PDF

Semi-finite Element Analysis of Rotating Disks Reinforced at Rim (테두리가 보강된 회전 원판의 반-유한요소해석)

  • Koo, Kyo-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.537-544
    • /
    • 2009
  • In order to increase the critical speed of rotating disks of which functional material could not be changed such as in optical and magnetic data storage disks, a new disk with a rim reinforced by composite material is proposed and its concept is verified by numerical analysis. Stress distributions are found for the rotating disk composed of two annular disks of which materials are isotropic inside and orthotropic outside. Dynamic equation is formulated in order to calculate the natural frequency and critical speed. For the solution of lateral vibration, a rotational symmertry condition is applied along circumferential direction and a finite element interpolation with Hermite polynomial is performed along the radial direction to obtain a proper solution. According to the results, reinforcing a disk at rim makes critical speeds drastically increased, and induces a buckling phenomenon in mode (0,0) which occurs over the lowest critical speed.

A Study on Bending Vibration of Laminated Rotating Disc (복합재료 회전체의 휨진동에 관한 연구)

  • Park, Sung-Jin;LEE, Seung-Hyeon
    • Journal of Urban Science
    • /
    • v.10 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • In this study, the vibration characteristics were theoretically analyzed by modeling a free isotropic rotating disk with an outer periphery with a fixed inner periphery, paying attention to disks used as storage devices for information devices, especially magnetic disks, magneto-optical disks, and compact disks in which the head and disk are non-contact. Iluminate with Composite materials represented by fiber-reinforced plastics (FRP) have high specific strength (strength/density) and specific stiffness (narrowness/density). It is used in the elements, and its use is rapidly expanding. Under this circumstance, the disk currently manufactured using an isotropic material made of various plastic materials such as aluminum or polycarbonate as a base material is an extremely anisotropic material made of a composite material, and the circumferential stiffness of the disk is made of reinforcing fibers in the circumferential direction. It is modeled as an anisotropic rotating disk with increased, and its influence on the vibration characteristics is revealed.

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

High Magnetoelectric Properties in 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 Single Crystal and Terfenol-D Laminate Composites

  • Ryu, Jung-Ho;Priya, Shashank;Uchino, Kenji;Kim, Hyoun-Ee;Viehland, Dwight
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.813-817
    • /
    • 2002
  • Magnetoelectric(ME) laminate composites of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3 (PMN-PT)$ and Terfenol-D were prepared by sandwiching single crystals of PMN-PT between Terfenol-D disks. The magnetoelectric voltage coefficient (dE/dH) of the composite was determined to be 10.30 V/cm${\cdot}$Oe, at 1 kHz and under a dc magnetic bias of 0.4 T. The value of dE/dH is ∼80 times higher than either that of naturally occurring magnetoelectrics or artificially-grown magnetoelectric composites. This superior magnetoelectric voltage coefficient is attributed to the high piezoelectric voltage constant as well as the high elastic compliance of PMN-PT single crystal and the large magnetostrictive response of Terfenol-D.