• 제목/요약/키워드: Magnetic bearings

검색결과 197건 처리시간 0.029초

Dynamic Magnetic Field Measurement in the Air Gap of Magnetic Bearings Based on FBG-GMM Sensor

  • Jiayi, Liu;Zude, Zhou;Guoping, Ding;Huaqiang, Wang
    • Journal of the Optical Society of Korea
    • /
    • 제19권6호
    • /
    • pp.575-585
    • /
    • 2015
  • Magnetic field in magnetic bearings is the physical medium to realize magnetic levitation, the distribution of the magnetic field determines the operating performance of magnetic bearings. In this paper, a thin-slice Fiber Bragg Grating-Giant Magnetostrictive Material magnetic sensor used for the air gap of magnetic bearings was proposed and tested in the condition of dynamic magnetic field. The static property of the sensor was calibrated and a polynomial curve was fitted to describe the performance of the sensor. Measurement of dynamic magnetic field with different frequencies in magnetic bearings was implemented. Comparing with the finite element simulations, the results showed the DC component of the magnetic field was detected by the sensor and error was less than 5.87%.

200 마력급 터보 블로워 적용을 위한 자기베어링 설계 (Design of Magnetic Bearings for 200 HP Class Turbo Blower)

  • 박철훈;윤태광;박준영
    • 한국유체기계학회 논문집
    • /
    • 제18권6호
    • /
    • pp.12-18
    • /
    • 2015
  • Recently, the development trend of turbomachinery is high capacity and high efficiency. Most of turbomachinery in the market are adopting ball bearings or air foil bearings. However, ball bearings have a limit for high speed product over $2.0{\times}10^6DN$(product of the inner diameter of the bearing in mm (D) and the maximum speed in rpm (N)). Air foil bearings have a limit for high axial load for high power products over 200~300 HP(horse power). Magnetic bearing is one of the solutions to overcome the limits of high speed and high axial load. Because magnetic bearings have no friction between the rotor and the bearings, they can reduce the load of the motor and make it possible to increase the rotating speed up to $5.0{\times}10^6DN$. Moreover, they can have high axial load capacity, because the axial load capacity of magnetic bearing depends on the capacity of the designed electromagnet. In this study, the radial and thrust magnetic bearings are designed to be applied to the 200 HP class turbo blower, and their performance was evaluated by the experiment. Based on the tests up to 26,400 rpm and 21,000 rpm under the no-load and load condition, respectively, it was verified that the magnetic bearings are stably support the rotor of the turbo blower.

자기베어링 적용 공작기계용 고속 스핀들 개발 (Development of High Speed Spindle for Machine Tool with Magnetic Bearings)

  • 박철훈;함상용;홍두의;김준규
    • 한국소음진동공학회논문집
    • /
    • 제25권12호
    • /
    • pp.895-900
    • /
    • 2015
  • Most of spindles for machine tool are supported by ball bearings, and there are problems in the limits of high speed and high power as well as the cumbersome maintenance due to the short life time. In order to overcome these problems of the conventional spindles, the high speed spindle with magnetic bearings is developed in this study. Magnetic bearings for 60 000 r/min class high-speed spindle are designed, and high speed spindle with magnetic bearings are fabricated. Based on the running test up to 60 000 r/min, it is verified that the spindle is stably supported by the magnetic bearings, and the magnitude of the unbalance response at 60 000 r/min is less than $3{\mu}m$.

Fault Tolerant Control of Magnetic Bearings

  • Na Uhn-Joo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.388-392
    • /
    • 2002
  • Fault tolerant control algorithm for heteropolar magnetic bearings are presented. This fault tolerant control utilizes grouping of currents as C-cores in order to isolate magnetic fluxes. Hardware requirements to maintain fault tolerant control are reduced since decoupling chokes are not required in this control scheme. The currents supplied to each pole are redistributed, if some coils fail suddenly, such that the resultant magnetic forces should remain invariant through coil failure events. Load capacity before magnetic saturation is reduced through coil failures while maintaining the same magnetic forces before and after failure.

  • PDF

Fault Tolerant Homopolar Magnetic Bearings with Flux Invariant Control

  • Na Uhn-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.643-651
    • /
    • 2006
  • The theory for a novel fault-tolerant 4-active-pole homopolar magnetic bearing is developed. If any one coil of the four coils in the bearing actuator fail, the remaining three coil currents change via an optimal distribution matrix such that the same opposing pole, C-core type, control fluxes as those of the un-failed bearing are produced. The hompolar magnetic bearing thus provides unaltered magnetic forces without any loss of the bearing load capacity even if any one coil suddenly fails. Numerical examples are provided to illustrate the novel fault-tolerant, 4-active pole homopolar magnetic bearings.

공기포일 자기 하이브리드 베어링으로 지지되는 연성 축의 휨 모드 진동 제어 (Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing)

  • 정세나;안형준;김승종;이용복
    • Tribology and Lubricants
    • /
    • 제27권2호
    • /
    • pp.57-64
    • /
    • 2011
  • Hybrid air-foil magnetic bearing integrates two oil free bearing technologies synergetically to adopt the strengths of two bearings with minimizing their weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing the control gain and the rotor center position of magnetic bearing. The experimental results shows that the hybrid bearing can control the bending mode vibration of the flexible shaft effectively and an optimal performance can be achieved with an appropriate load sharing between the air-foil and the magnetic bearings.

초정밀 직선 이송계용 능동 자기예압 공기베어링에 관한 연구 (Study on the Air Bearings with Actively Controllable Magnetic Preloads for an Ultra-precision Linear Stage)

  • 노승국;김수현;곽윤근;박천홍
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.134-142
    • /
    • 2008
  • In this paper, we propose a precise linear motion stage supported by magnetically preloaded air bearings. The eight aerostatic bearings with rectangular carbon porous pads were located only one side of vertical direction under the platen where four bearings are in both sides of horizontal direction as wrap-around-design, and this gives simpler configuration than which constrained by air bearings for all direction. Each of the magnetic actuators has a permanent magnet generating static magnetic flux far required preload and a coil to perturb the magnetic farce resulting adjustment of air- bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder was designed and built to verify this design concept. The load capacity, stiffness and preload force were examined and compared with analysis. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed. It was shown that motion control far three DOF motions were linear and independent after calibration of the control gains.

동수압 베어링으로 지지되는 연성축의 자기 베어링을 이용한 진동제어에 관한 연구 (A Study on the Vibration Control Using Magnetic Bearings of the Flexible Shaft Supported by Hydrodynamic Bearings)

  • 정성천;장인배;한동철
    • Tribology and Lubricants
    • /
    • 제10권2호
    • /
    • pp.43-50
    • /
    • 1994
  • The hydrodynamic bearing is accepted in many rotating systems because it has a large load carrying capacity. But the anisotropic pressure distribution of the bearing can arise the unstable vibration phenomenon over a certain speed. The magnetic bearing is an active element so that the unstable phenomenon of the hydrodynamic bearing, which is induced by the anisotropic support pressure of the oil film, can be controlled if the control algorithm and the controller gains are chosen appropriately. In this study, we investigate the stabilization method of the hydrodynamic bearing system composing the hybrid bearing which is the single unit of hydrodynamic bearing and magnetic bearing. The load carrying conditions of the hybrid bearing is modelled by the sum of the stiffness and damping coefficients of the hydrodynamic and the magnetic bearings in each direction. The dynamics of the rotor is analyzed by the Finite Element Method and the stability limit is determined by the eigenvalues of the hybrid bearings and shaft system. The eigenvalue study of the system shows that the stability limit of the hybrid bearing is increased compared to that of the hydrodynamic bearing. A Small increment of the stiffness and damping coefficient of the hybrid bearings by the magnetic actuators can increase the stability limit of the system. In this paper we tried to show the design references of the hybrid bearings by using the nondimensional bearing parameters. The analysis results show the possibilities of the stability limit increment of the hydrodynamic bearing system by combining the magnetic bearing.

자기베어링의 Fault Tolerance 제어 (Fault Tolerant Control of Magnetic Bearings)

  • Na, Uhn-Joo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.342.2-342
    • /
    • 2002
  • Fault tolerant control algorithm fer heteropolar magnetic bearings are presented. This fault tolerant control utilizes grouping of currents as C-cores in order to isolate magnetic fluxes. Hardware requirements to maintain fault tolerant control are reduced since decoupling chokes are not required in this control scheme. The currents supplied to each pole are redistributed, if some coils (ail suddenly, such that the resultant magnetic forces should remain invariant through coil failure events. (omitted)

  • PDF

플라이휠 에너지 저장장치를 위한 저 전력소모 하이브리드 마그네틱 베어링의 설계 (Design of Low Power Consumption Hybrid Magnetic Bearing for Flywheel Energy Storage System)

  • 김우연;이종민;배용채;김승종
    • 한국소음진동공학회논문집
    • /
    • 제20권8호
    • /
    • pp.717-726
    • /
    • 2010
  • For the application into a 1 kWh flywheel energy storage system(FESS), this paper presents the design scheme of radial and axial hybrid magnetic bearings which use bias fluxes generated by permanent magnets. In particular, the axial hybrid magnetic bearing is newly proposed in this paper, in which a permanent magnet is arranged in axial direction so that it can support the rotor weight as well as provide a bias flux for axial magnetic bearing. Such hybrid magnetic bearings consume very low power, compared with conventional electromagnetic bearings. In this paper, to stably support a 140 kg flywheel rotor without contact, design process is explained in detail, and magnetic circuit analysis and three-dimensional finite element analysis are carried out to determine the design parameters and predict the performance of the magnetic bearings.