• Title/Summary/Keyword: Magnetic Spring

Search Result 117, Processing Time 0.021 seconds

Analysis of Fast Response Characteristics of Solenoid Actuator for Pneumatic Valve (공기압 밸브 개폐용 솔레노이드 액츄에이터의 속응성 해석)

  • Sung, Baek-Ju;Lee, Eun-Woong;Kim, Hyoung-Eui
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.84-87
    • /
    • 2002
  • The plunger speed of solenoid actuator is affected by mass of plunger magnetic motive force. inductance, and return spring. These factors are not independent but related with each other according to design characteristics of solenoid actuator So, it is impossible to change the designed value for the purpose of increasing plunger speed. In this paper, we performed the FEM analysis for non-magnetic ring which is used for increasing attraction force and plunger speed by concentration of effective magnetic flux, and also performed simulation for dynamic characteristics of plunger. And, we proved the propriety of these by experiments.

  • PDF

Development of VCB Driving Mechanism using Permanent Magnetic Actuator (자기 액츄에이터를 이용한 진공차단기 구동 메카니즘 개발)

  • 최명준;석복렬;김창욱;최영찬;박일한
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.381-389
    • /
    • 2003
  • Nowadays, Vacuum Circuit Breaker(VCB) is used in the most medium voltage level because vacuum has environment-friendly characteristics as well as excellent dielectric strength. In order to elevate the breaking performance, the improvement of vacuum interrupters and the driving mechanism should be proceeded. In this paper, the development of a Permanent Magnet Actuator could replace the mechanical spring mechanism which is the driving mechanism of existing VCB. The holding force and opening characteristics of magnetic actuator are analysed with FEM and the result is verified through experiment.

Chracteristics Analysis of High-Speed Solenoid Actuator (고속 솔레노이드 액츄에이터의 특성 해석)

  • Sung Baek-Ju;Lee Eun-Woong;Kim Hyoung-Eui
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.962-964
    • /
    • 2004
  • The plunger speed of solenoid actuator is affected by mass of plunger, magnetic motive force, inductance, and return spring. These factors are not independent but related with each other according to design characteristics of solenoid actuator. So, it is impossible to change the designed value for the purpose of increasing plunger speed. In this study, we have analyzed the characteristics of high-speed solenoid actuator having a non-magnetic ring which plays a role to concentrate the effective magnetic flux into plunger. For more detailed analysis, we have induced characteristic equations and performed FEM analysis and simulation for dynamic characteristics of plunger, and proved the propriety of these by experiments.

  • PDF

Analysis of Operational Characteristic for Solenoid Actuator Considering Eddy Current Effects (와전류의 영향을 고려한 솔레노이드 액츄에이터의 동작특성 해석)

  • Sung, Baek-Ju;Lee, Eun-Woong;Kim, Hyoung-Eui
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.816-818
    • /
    • 2003
  • Solenoid actuator's operating speed is affected by magnetic motive force, plunger mass, inductance, return spring constant, and eddy current. Recently, non-magnetic ring is generally used for improving the operational speed, because it is impossible that changing of any specified design factor and stacking of plunger steel. This paper represents the dynamic equations of solenoid actuator, simulations for the response characteristics, analysis of eddy current effect by using the induced time constant. And, we experiment for the operating characteristics in case of non-magnetic ring is exists and not exists in the plunger.

  • PDF

Analytical and Experimental Studies on the design of Electromagnetic Shock Absorber (전자기식 충격흡수구조의 설계를 위한 동특성 해석 및 실험)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk;Im, Jae-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • A shock absorber with magnetic effects is suggested for a lunar space-ship expected to launch in 2025. The device consists of a copper steel combined tube, two magnets, and a piston. The piston is designed to move a magnet through the tube when it is pushed by an external impact. While the magnet is moving in the tube, it generates the eddy current force with the copper part of the tube and it also makes the large friction force with the steel part of the tube. Beside, it gets resistive forces against its movement such as the magnetic force with a steel-ring at the first time of the movement and the repulsive force with a same pole opposed magnet at the end time of the movement. In this thesis, results of analyses and experiments of each force are represented and the expected performance of the electromagnetic shock absorber is drawn from the results.

Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field

  • Esmaeili, Hemat Ali;Khaki, Mehran;Abbasi, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.21-31
    • /
    • 2018
  • In this work, the dynamic stability of carbon nanotubes (CNTs) reinforced composite pipes conveying pulsating fluid flow is investigated. The pipe is surrounded by viscoelastic medium containing spring, shear and damper coefficients. Due to the existence of CNTs, the pipe is subjected to a 2D magnetic field. The radial induced force by pulsating fluid is obtained by the Navier-Stokes equation. The equivalent characteristics of the nanocomposite structure are calculated using Mori-Tanaka model. Based on first order shear deformation theory (FSDT) or Mindlin theory, energy method and Hamilton's principle, the motion equations are derived. Using harmonic differential quadrature method (HDQM) in conjunction with the Bolotin's method, the dynamic instability region (DIR) of the system is calculated. The effects of different parameters such as volume fraction of CNTs, magnetic field, boundary conditions, fluid velocity and geometrical parameters of pipe are shown on the DIR of the structure. Results show that with increasing volume fraction of CNTs, the DIR shifts to the higher frequency. In addition, the DIR of the structure will be happened at lower excitation frequencies with increasing the fluid velocity.

An Investigation on the Lateral Vibration of General Rotors Considering Additional Effects (부수적인 영향 을 고려한 일반적인 회전축 의 횡진동 에 관한 연구)

  • 한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.81-90
    • /
    • 1985
  • For the prediction of the real vibration and stability behaviour of rotor-beaing systems, various additional effects were considered, which are simplified or neglected by conventional modeling of real rotors. These are specially coupled spring and damping coefficients of journal bearings, spring and damping coefficients of external supporting elements for bearings, static load exerting on gears or pulleys by power transmissions, excitation through the gear tolerance or failure, and positive or negative spring and damping characteristics of magnetic or sealing friction force. Considering these effects, a computer program for the calculation of free and forced vibration of rotating shafts supported by two or more bearings is developed, based on the transfer matrixed method. The reliability of the calculated resutls were ascertianed by comparing with the measured data on high speed rotors supported by two journal bearings.

Vibration suppression in high-speed trains with negative stiffness dampers

  • Shi, Xiang;Zhu, Songye;Ni, Yi-qing;Li, Jianchun
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.653-668
    • /
    • 2018
  • This work proposes and investigates re-centering negative stiffness dampers (NSDs) for vibration suppression in high-speed trains. The merit of the negative stiffness feature is demonstrated by active controllers on a high-speed train. This merit inspires the replacement of active controllers with re-centering NSDs, which are more reliable and robust than active controllers. The proposed damper design consists of a passive magnetic negative stiffness spring and a semi-active positioning shaft for re-centering function. The former produces negative stiffness control forces, and the latter prevents the amplification of quasi-static spring deflection. Numerical investigations verify that the proposed re-centering NSD can improve ride comfort significantly without amplifying spring deflection.

Design of Hybrid Electromagnetic Actuator against Microvibration (미진동 저감을 위한 복합형 전자기식 액추에이터 설계)

  • Moon, S.J.;Choi, S.M.;Jeong, J.A.;Kim, C.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.299-304
    • /
    • 2009
  • A hybrid electromagnetic actuator with an air spring is designed so as to achieve the desired isolation reduce the vibration efficiency on the floor vibration. The performance specification of the hybrid electromagnetic actuator is determined based on the vibration criterion for vibration-sensitive equipment. In basic design stage of the electromagnetic actuator, the simple reluctance method is adapted to analyze magnetic circuits. The result is verified by finite element analysis using ANSYS Emag. Finally, some design parameters are optimized under several constraint conditions. Through this study, the design procedure for a specific electromagnetic actuator is set up using a simple reluctance method.

  • PDF

Evaluation and Analysis of Dynamic Characteristics in Tilt Actuator for High Density Optical Storage Devices (고밀도 광저장 기기용 틸트 액추에이터 동특성 분석 및 평가)

  • 김석중;이용훈;최한국
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.584-595
    • /
    • 2000
  • We design a new actuator for high density optical device in order to control the radial tilting motion. The newly designed actuator makes it possible to control the tilting motion actively, while the coventional actuator compress tilting motion with passive spring. First of all, We present 3-dimensional modeling of actuator and accomplish the modal analysis and magnetic analysis of actuator. Due to these results, a new designed actuator has performance of high sensitivity and high second resonance frequency. Secondly, We present the 3-DOF dynamic modeling of the 4-wire spring type actuator. sensitivity analysis is performed to consider the assembling error, such as the difference of mass center and force center. From these results, the sensitivities of rotation due to the assembly error are revealed and design criteria of rotation is presented. And experimental results of a newly designed actuator are presented and compared with theoretical results. Finally, We propose a dynamic tilt compensation and high acceleration actuator for high density optical storage devices.

  • PDF