• Title/Summary/Keyword: Magnetic Saturation Effect

검색결과 185건 처리시간 0.026초

자기 포화와 누설자속이 고려된 자기등가회로법을 이용한 클로우 폴 스테핑 모터의 요크 형상 설계 (Yoke Shape Design of Claw-Poles Stepping Motor Using Modified Magnetic Equivalent Circuit Method Including Magnetic Saturation Effect and Leakage Flux)

  • 이형우;조수연;배재남;손병욱;박경진;이주
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1942-1946
    • /
    • 2009
  • This paper presents a shape design process of Claw-Poles Stepping Motor(CPSM) using Modified Magnetic Equivalent Circuit Method(MMEC). Because this motor is adopted on low power devices, the motor size is a very small type. But it have a very strong permanent magnet. So magnetic saturation effect happens on yoke teeth of CPSM. Also this magnetic saturation effect causes more leakage flux component between yoke tooth have another pole. In this motor type, it is essential to design a shape of yoke teeth for avoiding the magnetic saturation effect and the leakage flux. In this paper, MMEC including the magnetic saturation effect and the leakage flux component was used for design process. Comparing with data calculated by using the MMEC and results analyzed by 3-D FEM, it could be stated that the design process with MMEC was reasonable. Finally, the model has the optimized shape of yoke teeth was compared with a conventional model for no-load Back EMF and torque at steady-state operation.

A Practical Method to Correct the Saturation Effect in XMCD Spectra

  • Kim, J.Y.
    • Journal of Magnetics
    • /
    • 제13권3호
    • /
    • pp.85-87
    • /
    • 2008
  • I report a simple method to correct the saturation effect in absorption spectra measured in total electron yield (TEY) mode. It does not require additional measurements of the X-ray penetration depth. In order to check the reliability of the method, X-ray magnetic circular dichroism (XMCD) spectra for polycrystalline Fe were measured at two different incident angles, and then processed with the method. The two resultant XMCD spectra were identical, and their sum rule analysis produced the ratios of orbital magnetic moment to spin magnetic moment, which were very close to the well-known value.

Magnetic Saturation Effect on the Rotor Core of Synchronous Reluctance Motor

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.634-639
    • /
    • 2011
  • This paper presents a study on the design parameters that consider the magnetic saturation effect in a rotor core of a synchronous reluctance motor. Two important design parameters in a rotor are selected to analyze the saturation effect of a synchronous reluctance motor, particularly in a rotor core. The thickness of the main segment, which is the main path of the d-axis flux, and the end rip, which affects the q-axis flux, are analyzed using the d-axis and q-axis inductances. Moreover, the characteristics of torque and torque ripple when magnetic saturation takes place are analyzed. The saturation effect is verified by comparing the reluctance torque between the experiment and FEM simulation.

Compensation of Periodic Magnetic Saturation Effects for the High-Speed Sensorless Control of PMSM Driven by Inverter Output Power Control-based PFC Strategy

  • Lee, Kwang-Woon
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1264-1273
    • /
    • 2015
  • An inverter output power control based power factor correction (PFC) strategy is being extensively used for permanent magnet synchronous motor (PMSM) drives in appliances because such a strategy can considerably reduce the cost and size of the inverter. In this strategy, PFC circuits are removed and large electrolytic DC-link capacitors are replaced with small film capacitors. In this application, the PMSM d-q axes currents are controlled to produce ripples, the frequency of which is twice that of the AC main voltage, to obtain a high power factor at the AC mains. This process indicates that the PMSM operates under periodic magnetic saturation conditions. This paper proposes a back electromotive-force (back-EMF) estimator for the high-speed sensorless control of PMSM operating under periodic magnetic saturation conditions. The transfer function of the back-EMF estimator is analyzed to examine the effect of the periodic magnetic saturation on the accuracy of the estimated rotor position. A simple compensation method for the estimated position errors caused by the periodic magnetic saturation is also proposed in this paper. The effectiveness of the proposed method is experimentally verified with the use of a PMSM drive for a vacuum cleaner centrifugal fan, wherein the maximum operating speed reaches 30,000 rpm.

유도전동기의 자기적 포화가 가변속 제어의 효율에 미치는 영향 (Effect for Eefficiency of Variable Speed Control of Magnetic Saturation in Induction Machine)

  • 정종호;윤서진;이은웅;문제연
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.52-54
    • /
    • 1998
  • In this paper, analytically presented the magnetic saturation impact on the efficiency of induction motor. Especially, in this study concerned with various cases such as included magnetic saturation, constant flux.

  • PDF

Design and Analysis of Interior Permanent Magnet Synchronous Motor Considering Saturated Rotor Bridge using Equivalent Magnetic Circuit

  • Shin, Kyung-Hun;Yu, Ju-Seong;Choi, Jang-Young;Cho, Han-Wook
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.404-410
    • /
    • 2014
  • This paper considers the design and performance evaluation of interior permanent magnet synchronous motors (IPMSMs). The initial design such as the sizing and shape design of the stator and rotor is performed for a given load condition. In particular, the equivalent magnetic circuit (EMC) is employed both to design the mechanical parameters of the rotor while considering nonlinear magnetic saturation effect and to analyze the magnetic characteristics of the air-gap of the motor. The designed motor is manufactured and tested to confirm the validity of the design processes and simulated results.

Linear Instability and Saturation Characteristics of Magnetosonic Waves along the Magnetic Field Line

  • Min, Kyungguk;Liu, Kaijun
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권2호
    • /
    • pp.85-94
    • /
    • 2020
  • Equatorial noise, also known magnetosonic waves (MSWs), are one of the frequently observed plasma waves in Earth's inner magnetosphere. Observations have shown that wave amplitudes maximize at the magnetic equator with a narrow extent in their latitudinal distribution. It has been understood that waves are generated from an equatorial source region and confined within a few degrees magnetic latitude. The present study investigates whether the MSW instability and saturation amplitudes maximize at the equator, given an energetic proton ring-like distribution derived from an observed wave event, and using linear instability analysis and particle-in-cell simulations with the plasma conditions at different latitudes along the dipole magnetic field line. The results show that waves initially grow fastest (i.e., with the largest growth rate) at high latitude (20°-25°), but consistent with observations, their saturation amplitudes maximize within ±10° latitude. On the other hand, the slope of the saturation amplitudes versus latitude revealed in the present study is not as steep as what the previous statistical observation results suggest. This may be indicative of some other factors not considered in the present analyses at play, such as background magnetic field and plasma inhomogeneities and the propagation effect.

국부적 자속 포화 현상을 이용한 리엑터 및 변압기의 공극 등가 모델에 관한 연구 (Study on Transformer and Inductor Using Equivalent Air gap to Partial Flux Saturation)

  • 박성준;이상훈;김정훈
    • 한국산업융합학회 논문집
    • /
    • 제17권3호
    • /
    • pp.103-112
    • /
    • 2014
  • BY the Transformers and reactors, the input electrical energy is converted into magnetic energy. At the end through the magnetic energy was passed at the output parameter. Specially At the flyback transformer or a reactor airgap were designed to contain more magnetic energy. But that work is very difficult for the optimal design. It is that Contradictions are between the length of the Air-gap, Winding inductance, DC bias. As to e Several conflicting conditions in order to determine the optimum Air-gap has a lot of experience and trial & error is necessary. The approach proposed in this paper, the auxiliary winding on the core attached to part of primary core, that by applying a DC voltage has a dramatic effect like Core with designed Air-gap. This inventiveness and advantage is to regulate arbitrarily the Saturation Flux Quantity by the input signal to secondary winding. Accordingly obtained the biggest effect is that increasing limits of the saturation current destined by the material and shape of the conventional core. In other words, that can decreas the size of the transformer and reactor, While maintaining the current saturation capacity. This paper, prove its effect as using the local flux saturation in transformers and reactors for research by the computer program using the finite element method (FEM) simulation, followed by actual experiment to verify

재료의 비선형을 고려한 수직기록장치의 위상최적화 (Topology Optimization of Perpendicular Magnetic Recording System by Considering Magnetic Nonlinearity)

  • 박순옥;유정훈;민승재
    • 대한기계학회논문집A
    • /
    • 제34권7호
    • /
    • pp.821-827
    • /
    • 2010
  • 본 논문은 밀도법을 기반으로 한 자기포화 효과를 고려한 수직자기 기록장치의 위상최적 설계 방법을 제안한다. 자기장 내의 위상최적화 과정에서 자기 저항률의 값은 민감도 해석 결과에 따른 요소의 밀도값 변화에 의거하여 결정된다. B-H 곡선에 따른 자기 저항률의 값은 물성치의 비선형성을 나타낸다. 일반화된 응답 함수의 민감도는 자기장의 비선형 특성을 고려하여 보조 변수법에 의해 표현되고, 설계의 목적 함수는 기록 영역의 자기에너지를 최대화하는 것으로 설정된다. 선형과 비선형의 최적화의 수치 연구의 결과는 비선형의 효과를 나타내고 있다.

Fe-Hf-N 연자성 박막의 자기적 특성에 미치는 박막 두께의 영향 (The Effect of Thicknesses on Magnetic Properties of Fe-Hf-N Soft Magnetic Thin Films)

  • 최종운;강계명
    • 한국표면공학회지
    • /
    • 제44권6호
    • /
    • pp.255-259
    • /
    • 2011
  • The thickness dependence of magnetic properties was experimentally investigated in nanocrystalline Fe-Hf-N thin films fabricated by a RF magnetron sputtering method. In order to investigate the thickness effect on their magnetic properties, the films are prepared with different thickness ranges from 90 nm to 330 nm. It was revealed that the coercivity of the thin film increased with film thickness. On the contrary, the saturation magnetization decreased with film thickness. On the basis of the SEM and TEM, an amorphous phase forms during initial growth stage and it changes to crystalline structure after heat treatment at $550^{\circ}C$. Nanocrystalline Fe-Hf-N particles are also generated.