• Title/Summary/Keyword: Magnetic Reconnection

Search Result 68, Processing Time 0.02 seconds

ESTIMATION OF SPICULE MAGNETIC FIELD USING OBSERVED MHD WAVES BY THE HINODE SOT

  • Kim, Yeon-Han;Bong, Su-Chan;Park, Young-Deuk;Cho, Kyung-Suk;Moon, Yong-Jae;Suematsu, Yoshinori
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.6
    • /
    • pp.173-180
    • /
    • 2008
  • Using the MHD coronal seismology technique, we estimated the magnetic field for three spicules observed in 2008 June. For this study, we used the high resolution Ca II H line ($3968.5\;{\AA}$) images observed by the Hinode SOT and considered a vertical thin flux tube as a spicule model. To our knowledge, this is the first attempt to estimate the spicule magnetic field using the Hinode observation. From the observed oscillation properties, we determined the periods, amplitudes, minimum wavelengths, and wave speeds. We interpreted the observed oscillations as MHD kink waves propagating through a vertical thin flux tube embedded in a uniform field environment. Then we estimated spicule magnetic field assuming spicule densities. Major results from this study are as follows : (1) we observed three oscillating spicules having durations of 5-7 minutes, oscillating periods of 2-3 minutes, and transverse displacements of 700-1000 km. (2) The estimated magnetic field in spicules is about 10-18 G for lower density limit and about 43-76 G for upper density limit. (3) In this analysis, we can estimate the minimum wavelength of the oscillations, such as 60000 km, 56000 km, and 45000 km. This may be due to the much longer wavelength comparing with the height of spicules. (4) In the first event occurred on 2008 June 03, the oscillation existed during limited time (about 250 s). This means that the oscillation may be triggered by an impulsive mechanism (like low atmospheric reconnection), not continuous. Being compared with the ground-based observations of spicule oscillations, our observation indicates quite different one, i.e., more than one order longer in wavelength, a factor of 3-4 larger in wave speed, and 2-3 times longer in period.

The Role of Magnetic Topology in the Heating of Active Region Coronal Loops

  • Lee, Jin-Yi;Barnes, Graham;Leka, K.D.;Reeves, Katharine K.;Korreck, K.E.;Golub, L.;Deluca, E.E.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.86.2-86.2
    • /
    • 2011
  • We investigate the evolution of coronal loop emission in the context of the coronal magnetic field topology. New modeling techniques allow us to investigate the magnetic field structure and energy release in active regions (ARs). Using these models and high-resolution multi-wavelength coronal observations from the Transition Region and Coronal Explorer and the X-ray Telescope on Hinode, we are able to establish a relationship between the light curves of coronal loops and their associated magnetic topologies for NOAA AR 10963. We examine loops that show both transient and steady emission, and we find that loops that show many transient brightenings are located in domains associated with a high number of separators. This topology provides an environment for continual impulsive heating events through magnetic reconnection at the separators. A loop with relatively constant X-ray and EUV emission, on the other hand, is located in domains that are not associated with separators. This result implies that larger-scale magnetic field reconnections are not involved in heating plasma in these regions, and the heating in these loops must come from another mechanism, such as smallscale reconnections (i.e., nanoflares) or wave heating. Additionally, we find that loops that undergo repeated transient brightenings are associated with separators that have enhanced free energy. In contrast, we find one case of an isolated transient brightening that seems to be associated with separators with a smaller free energy.

  • PDF

Polar rain flux variations in northern hemisphere observed by STSAT_1 with IMF geometry

  • Hong, Jin-Hy;Lee, J.J.;Min, K.W.;Kim, K.H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.25.2-25.2
    • /
    • 2008
  • Polar rain is a spatially uniform precipitation of electrons with energies around 100eV that penetrate into the polar cap region where geomagnetic field lines are connected to the Interplanetary Magnetic Fields (IMF). Since their occurrences depend on the IMF sector polarity, they are believed to originate from the field aligned component of the solar wind. However, statistically direct correlation between polar rain and solar wind has not been shown. In this presentation, we examined specifically the IMF strength influence on the polar rain flux variation by classifying of IMF sector polarities. For this study, we employed the polar rain flux data measured by STSAT-1 and compared them with the solar wind parameters obtained from the WIND and ACE satellites. We found the direct mutuality between polar rain flux and IMF strength with correlation coefficient above 0.5. This proportional tendency appears stronger when the northern hemisphere is in the away sector of the IMF, which could be associated with a favorable geometry for magnetic reconnection. Simple particle trajectory simulation clearly shows why polar rain intensity depends on the IMF sector polarity. These results are consistent with the direct entry model of Fairfield et al.(1985), while low correlation coefficient with solar wind density, the similarity between slops of both energy spectra shows that transport process occur without acceleration.

  • PDF

FISS and SDO Observation of a Brightening Event Near a Pore

  • Kang, Juhyeong;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.61.2-61.2
    • /
    • 2017
  • We report a fine scale transient brightening event near a pore boundary with the Fast Imaging Solar Spectrograph (FISS) of the 1.6m Goode Solar Telescope (GST), the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO), and Helioseismic and Magnetic Imager (HMI) aboard SDO. The event appears in all AIA extreme ultraviolet bands, also in the two FISS lines, $H{\alpha}$ and Ca II $8542{\AA}$, and lasted for a minute. The brightening occurred at a footpoint of a loop. The conjugate brightening occurred at the other foot point outside the FISS field of view. The brightening near the pore exhibit a redshift of 4.3 km s-1 in the $H{\alpha}$ and about 2.3 km s-1 in Ca II line. Differential emission measure derived from 6 AIA EUV passbands and cloud model fitting of the two FISS lines indicate the temperature increase of between 10,000 and 20 MK at the main event. After the brightening, the upward mass motion appears in the AIA images. We discuss the physical implication of this brightening in the context of magnetic reconnection and coronal heating.

  • PDF

A small-scale H-alpha eruption in the north polar limb of the Sun observed by New Solar Telescope

  • Kim, Yeon-Han;Park, Young-Deuk;Bong, Su-Chan;Cho, Kyung-Suk;Chae, Jong-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.50.1-50.1
    • /
    • 2010
  • The New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO) is the recently constructed world largest 1.6 m optical solar telescope on the ground. We took an observation of the north polar limb in H-alpha line center wavelength on 2009 August 26 with the instrument at Nasmyth focus of the NST and found a remarkable small-scale H-alpha eruption from 18:20 UT and 18:45 UT. The eruption occurred with a relatively slow speed of about 10 km/s in early stage and a slight acceleration up to 20-30 km/s in later stage. We also found that the eruption shows a deflection along the pre-existing magnetic field as well as several interesting features such as bifurcation, rotation, horizontal oscillation, and direction and thickness change of its structure during the eruption. In this talk, we will report the observational properties of the small-scale eruption observed by the NST and discuss their implication on magnetic reconnection.

  • PDF

Evolution of Coronal Magnetic Fields Consisting of Flux Ropes and Overlying Fields

  • Jun, Hongdal;Yi, Sibaek;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.69.1-69.1
    • /
    • 2019
  • A series of numerical MHD simulations are performed to investigate the evolution of coronal magnetic fields consisting of two flux ropes and an overlying field. Depending on the directions of the axial current and the axial field, two co-helicity cases and two counter-helicity cases are addressed. In Case 1, in which both the axial currents and the axial fields are parallel, flux rope merging bears a huge flux rope with a large winding number. This flux rope naturally erupts, but the whole evolutionary process is rather slow. In Case 2, in which the axial currents are parallel while the axial fields are antiparallel, a self-closed structure is formed and it drives eruption. In Case 3, in which the axial currents are antiparallel and the axial fields are parallel, each flux rope erupts independently and the presence of the other flux rope does not affect the eruption of one flux rope. In Case 4, in which both the axial currents and the axial fields are antiparallel, interaction of the flux ropes and the overlying field effects a breakout reconnection creating an apple-like CME configuration. Our study tells what kind of eruption mechanisms are involved for different eruption features observed.

  • PDF

Simulations on Incompressible MHD Turbulence

  • CHO JUNGYEON
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.275-279
    • /
    • 2001
  • The study of incompressible magnetohydrodynamic (MHD) turbulence gives useful insights on many astrophysical problems. We describe a pseudo-spectral MHD code suitable for the study of incompressible turbulence. We review our recent' works on direct three-dimensional numerical simulations for MHD turbulence in a periodic box. In those works, we use a pseudo-spectral code to solve the incompressible MHD equations. We first discuss the structure and properties of turbulence as functions of scale. The results are consistent with the scaling law recently proposed by Goldreich & Sridhar. The scaling law is based on the concept of scale-dependent isotropy: smaller eddies are more elongated than larger ones along magnetic field lines. This scaling law substantially changes our views on MHD turbulence. For example, as noted by Lazarian & Vishniac, the scaling law can provide a fast reconnection rate. We further discuss how the study of incompressible MHD turbulence can help us to understand physical processes in interstellar medium (ISM) by considering imbalanced cascade and viscous damped turbulence.

  • PDF

OBSERVATIONS OF EUV RECURRING JETS IN AN ACTIVE REGION CONFINED BY CORONAL LOOPS

  • Zheng, Yan-Fang;Wang, Feng;Ji, Kai Fan;Deng, Hui
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.5
    • /
    • pp.183-190
    • /
    • 2013
  • Recurring jets, which are jets ejected from the same site, are a peculiar type among various solar jet phenomena. We report such recurring jets ejecting from the same site above an active region on January 22, 2012 with high-resolution multi-wavelength observations from Solar Dynamics Observatory(SDO). We found that the recurring jets had velocities, lengths and lifetimes, but had similar directions. The visible brightening appeared at the jet base before each jet erupted. All the plasma produced by the recurring jets could not overcome the large coronal loops. It seemed that the plasma ejecting from the jet base was confined and guided by preexisting coronal loops, but their directions were not along the paths of the loops. Two of the jets formed crossing structures with the same preexisting filament. We also examined the photospheric magnetic field at the jet base, and observed a visible flux emergence, convergence and cancellation. The four recurring jets all were associated with the impulsive cancellation between two opposite polarities occurring at the jet base during each eruption. In addition, we suggest that the fluxes, flowing out of the active region, might supply the energy for the recurring jets by examining the SDO/Helioseismic and Magnetic Imager (HMI) successive images. The observational results support the magnetic reconnection model of jets.

Can relativistic electrons be accelerated in the geomagnetic tail region?

  • Lee, J.J.;Parks, G.K.;Min, K.W.;Lee, E.S.;McCarthy, M.P.;Hwang, J.A.;Lee, C.N.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.31.1-31.1
    • /
    • 2008
  • While some observations in the geomagnetic tail region supported electrons could be accelerated by reconnection processes, we still need more observation data to confirm electron acceleration in this region. Because most acceleration processes accompany strong pitch angle diffusion, if the electrons were accelerated in this region, strong energetic electron precipitation should be observed near earth on aurora oval. Even though there are several low altitude satellites observing electron precipitation, intense and small scale precipitation events have not been identified successfully. In this presentation, we will show an observation of strong energetic electron precipitation that might be analyzed by relativistic electron acceleration in the confined region. This event was observed by low altitude Korean STSAT-1, where intense several hundred keV electron precipitation was seen simultaneously with 10 keV electrons during storm time. In addition, we observed large magnetic field fluctuations and an ionospheric plasma depletion with FUV aurora emissions. Our observation implies relativistic electrons can be generated in the small area where Fermi acceleration might work.

  • PDF

Study of a coronal jet observed by Hinode, SDO, and STEREO

  • Lee, Gyeong-Seon;Innes, Davina;Mun, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.35.2-35.2
    • /
    • 2011
  • We have investigated a coronal jet near the limb on 2010 June 27 by Hinode/X-Ray Telescope (XRT), EUV Imaging Spectrograph (EIS), SDO/Atmospheric Imaging Assembly (AIA), and STEREO. From EUV (AIA and EIS) and soft X-ray (XRT) images we identify the erupting jet feature in cool and hot temperatures. Using the high temporal and multi wavelength AIA images, we found that the hot jet preceded its associated cool jet and their structures are well consistent with the numerical simulation of the emerging flux-reconnection model. From the spectroscopic analysis, we found that the jet structure changes from blue shift to red one with time, which may indicate the helical structure of the jet. The STEREO observation, which enables us to observe this jet on the disk, shows that there was a dim loop associated with the jet. On the other hand, we found that the structure of its associated active region seen in STEREO is similar to that in AIA observed 5 days before. Based on this fact, we compared the jet morphology on the limb with the magnectic fields extrapolated from a HMI vector magnetogram of this active region observed on the disk. Interestingly, the comparison shows that the open and closed magnetic field configuration correspond to the jet and the dim loop, respectively, as the Shibata's jet model predicted.

  • PDF