Browse > Article
http://dx.doi.org/10.5303/JKAS.2008.41.6.173

ESTIMATION OF SPICULE MAGNETIC FIELD USING OBSERVED MHD WAVES BY THE HINODE SOT  

Kim, Yeon-Han (Korea Astronomy and Space Science Institute)
Bong, Su-Chan (Korea Astronomy and Space Science Institute)
Park, Young-Deuk (Korea Astronomy and Space Science Institute)
Cho, Kyung-Suk (Korea Astronomy and Space Science Institute)
Moon, Yong-Jae (Department of Astronomy and Space Science, Kyunghee University)
Suematsu, Yoshinori (National Astronomical Observatory of Japan)
Publication Information
Journal of The Korean Astronomical Society / v.41, no.6, 2008 , pp. 173-180 More about this Journal
Abstract
Using the MHD coronal seismology technique, we estimated the magnetic field for three spicules observed in 2008 June. For this study, we used the high resolution Ca II H line ($3968.5\;{\AA}$) images observed by the Hinode SOT and considered a vertical thin flux tube as a spicule model. To our knowledge, this is the first attempt to estimate the spicule magnetic field using the Hinode observation. From the observed oscillation properties, we determined the periods, amplitudes, minimum wavelengths, and wave speeds. We interpreted the observed oscillations as MHD kink waves propagating through a vertical thin flux tube embedded in a uniform field environment. Then we estimated spicule magnetic field assuming spicule densities. Major results from this study are as follows : (1) we observed three oscillating spicules having durations of 5-7 minutes, oscillating periods of 2-3 minutes, and transverse displacements of 700-1000 km. (2) The estimated magnetic field in spicules is about 10-18 G for lower density limit and about 43-76 G for upper density limit. (3) In this analysis, we can estimate the minimum wavelength of the oscillations, such as 60000 km, 56000 km, and 45000 km. This may be due to the much longer wavelength comparing with the height of spicules. (4) In the first event occurred on 2008 June 03, the oscillation existed during limited time (about 250 s). This means that the oscillation may be triggered by an impulsive mechanism (like low atmospheric reconnection), not continuous. Being compared with the ground-based observations of spicule oscillations, our observation indicates quite different one, i.e., more than one order longer in wavelength, a factor of 3-4 larger in wave speed, and 2-3 times longer in period.
Keywords
Sun: activity; Sun: chromosphere; Sun: magnetic field; Sun: oscillations;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Tsuneta, S., et al., 2008, The Solar Optical Telescope for the Hinode Mission: An Overview, Sol. Phys., 249, 167   DOI
2 Xia, L. D., Popescu, M. D., Doyle, J. G., & Giannikakis, J., 2005, Time series study of EUV spicules observed by SUMER/SoHO, A&A, 438, 1115   DOI   ScienceOn
3 Cirtain, J. W., et al., 2007, Evidence for Alfven Waves in Solar X-ray Jets, Science, 318, 1580   DOI   ScienceOn
4 Hasan, S. S. & Kalkofen, W., 1999, Excitation of Oscillations in Photospheric Flux Tubes through Buffeting by External Granules, ApJ, 519, 899   DOI
5 Kukhianidze, V., Zaqarashvili, T. V.;, & Khutsishvili, E. 2006, Observation of kink waves in solar spicules, A&A, 449, L35   DOI   ScienceOn
6 Nakariakov, V. M. & Ofman, L., 2001, Determination of the coronal magnetic field by coronal loop oscillations, A&A, 372, L53   DOI   ScienceOn
7 Roberts, B., 1979, Spicules - The resonant response to granular buffeting, Sol. Phys., 61, 23   DOI
8 Roberts, B., 2004, MHD Waves in the Solar Atmosphere, In Proceedings of 'SOHO 13 - Waves, Oscillations and Small-Scale Transient Events in the Solar Atmosphere: A Joint View from SOHO and TRACE', Palma de Mallorca, Balearic Islands, Spain , ESA SP-547, 1
9 Shimizu, T. et al,. 2008, Image Stabilization System for Hinode (Solar-B) Solar Optical Telescope, Sol. Phys., 249, 221   DOI
10 Singh, K. A. P. & Dwivedi, B. N., 2007, Estimation of spicule magnetic field using observed kink waves, New Astronomy, 12, 479   DOI   ScienceOn
11 Hollweg, J. V., 1981, Alfven waves in the solar atmosphere. II - Open and closed magnetic flux tubes, Sol. Phys., 70, 25   DOI
12 Suematsu, Y., et al., 2008, The Solar Optical Telescope of Solar-B (Hinode): The Optical Telescope Assembly, Sol. Phys., 249, 197
13 Spruit, H. C., 1981, Motion of magnetic flux tubes in the solar convection zone and chromosphere, A&A, 98, 155
14 Sterling, Alphonse C., 2000, Solar Spicules: A Review of Recent Models and Targets for Future Observations - (Invited Review), Sol. Phys., 196, 79   DOI
15 Suematsu, Y., 1998, Solar Spicules: A brief review of recent high-resolution observations, In Proceedings of an International meeting: Solar Jets and Coronal Plumes, Guadeloupe, France, ESA SP-421, p.19
16 Okamoto, T. J., et al., 2007, Coronal Transverse Magnetohydrodynamic Waves in a Solar Prominence, Science, 318, 1577   DOI   ScienceOn
17 Robbrecht, E., Verwichte, E., Berghmans, D., Hochedez, J. F., Poedts, S., & Nakariakov, V. M., 2001, Slow magnetoacoustic waves in coronal loops: EIT and TRACE, A&A, 370, 591   DOI   ScienceOn
18 Nikolsky, G. M. & Platova, A. G., 1971, Motions of $H{\alpha}-spicules$ along the solar limb, Sol. Phys., 18, 403   DOI
19 Ofman, L., Nakariakov, V. M., & Deforest, C. E., 1999, Slow Magnetosonic Waves in Coronal Plumes, ApJ, 514, 441   DOI
20 Kosugi, T. et al., 2007, The Hinode (Solar-B) Mission: An Overview, Sol. Phys., 243, 3   DOI
21 De Moortel, I., Ireland, J., & Walsh, R. W., 2000, Observation of oscillations in coronal loops , A&A, 335, L23
22 Kulidzanishvili, V. I. & Zhugzhda, Iu. D., 1983, On the problem of spicular oscillations, Sol. Phys., 88, 3
23 Zaqarashvili, T. V., Khutsishvili, E., Kukhianidze, V., & Ramishvili, G., 2007, Doppler-shift oscillations in solar spicules, A&A, 474, 627   DOI   ScienceOn
24 Nakariakov, V. M., Ofman, L., Deluca, E. E., Roberts, B., & Davila, J. M., 1999, TRACE observation of damped coronal loop oscillations: Implications for coronal heating, Science, 285, 862   DOI   ScienceOn
25 Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D., 1999, Coronal Loop Oscillations Observed with the Transition Region and Coronal Explorer, ApJ, 520, 880   DOI
26 Beckers, J. M., 1968, Solar Spicules (Invited Review Paper), Sol. Phys., 3, 367
27 De Pontieu, B., Erdelyi, R., & de Wijn, A. G., 2003, Intensity Oscillations in the Upper Transition Region above Active Region Plage, ApJ, 595, L63   DOI
28 Edwin, P. M., & Roberts, B., 1983, Wave propagation in a magnetic cylinder, Sol. Phys., 88, 179
29 De Pontieu, B., et al., 2007, Chromospheric Alfvenic Waves Strong Enough to Power the Solar Wind, Science, 318, 1574   DOI   ScienceOn
30 Deforest, C. E. & Gurman, J. B., 1998, Observation of Quasi-periodic Compressive Waves in Solar Polar Plumes, ApJ, 501, L217   DOI
31 Erdelyi, R., Malins, C., Toth, G., & de Pontieu, B., 2007, Leakage of photospheric acoustic waves into non-magnetic solar atmosphere, A&A, 467, 1299   DOI   ScienceOn