• Title/Summary/Keyword: Magnetic Reconnection

Search Result 68, Processing Time 0.033 seconds

An MHD Simulation of the X2.2 Solar Flare on 2011 February 15

  • Inoue, Satoshi;Choe, Gwangson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.69.1-69.1
    • /
    • 2014
  • We perform an MHD simulation combined with observed vector field data to clarify an eruptive dynamics in the solar flare. We first extrapolate a 3D coronal magnetic field under a Nonlinear Force-Free Field (NLFFF) approximation based on the vector field, and then we perform an MHD simulation where the NLFFF prior to the flare is set as an initial condition. Vector field was obtained by the Soar Dynamics Observatory (SDO) at 00:00 UT on February 15, which is about 90 minutes before the X2.2-class flare. As a result, the MHD simulation successfully shows an eruption of strongly twisted lines whose values are over one-turn twist, which are produced through the tether-cut magnetic reconnection in strongly twisted lines of the NLFFF. Eventually, we found that they exceed a critical height at which the flux tube becomes unstable to the torus instability determining the condition that whether a flux tube might escape from the overlying field lines or not. In addition to these, we found that the distribution of the observed two-ribbon flares is similar to the spatial variance of the footpoints caused by the reconnection of the twisted lines being resided above the polarity inversion line. Furthermore, because the post flare loops obtained from MHD simulation well capture that in EUV image taken by SDO, these results support the reliability of our simulation.

  • PDF

A MAGNETOHYDRODYNAMIC MODEL FOCUSED ON THE CONFIGURATION OF MAGNETIC FIELD RESPONSIBLE FOR A SOLAR PENUMBRAL MICROJET

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.49.2-49.2
    • /
    • 2010
  • In order to understand the configuration of magnetic field producing a solar penumbral microjet that was recently discovered by Hinode, we performed a magnetohydrodynamic simulation reproducing a dynamic process of how that configuration is formed in a modeled solar penumbral region. A horizontal magnetic flux tube representing a penumbral filament is placed in a stratified atmosphere containing the background magnetic field that is directed in a relatively vertical direction. Between the flux tube and the background field there forms the intermediate region in which the magnetic field has a transitional configuration, and the simulation shows that in the intermediate region magnetic reconnection occurs to produce a clear jet- like structure as suggested by observations. The result that a continuous distribution of magnetic field in three-dimensional space gives birth to the intermediate region producing a jet presents a new view about the mechanism of a penumbral microjet, compared to a simplistic view that two field lines, one of which represents a penumbral filament and the other the background field, interact together to produce a jet. We also discuss the role of the intermediate region in protecting the structure of a penumbral filament subject to microjets.

  • PDF

Magnetopause Waves Controlling the Dynamics of Earth's Magnetosphere

  • Hwang, Kyoung-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Earth's magnetopause separating the fast and often turbulent magnetosheath and the relatively stagnant magnetosphere provides various forms of free energy that generate low-frequency surface waves. The source mechanism of this energy includes current-driven kinetic physical processes such as magnetic reconnection on the dayside magnetopause and flux transfer events drifting along the magnetopause, and velocity shear-driven (Kelvin-Helmholtz instability) or density/pressure gradient-driven (Rayleigh-Taylor instability) magnetohydro-dynamics (MHD) instabilities. The solar wind external perturbations (impulsive transient pressure pulses or quasi-periodic dynamic pressure variations) act as seed fluctuations for the magnetopause waves and trigger ULF pulsations inside the magnetosphere via global modes or mode conversion at the magnetopause. The magnetopause waves thus play an important role in the solar wind-magnetosphere coupling, which is the key to space weather. This paper presents recent findings regarding the generation of surface waves (e.g., Kelvin-Helmholtz waves) at the Earth's magnetopause and analytic and observational studies accountable for the linking of the magnetopause waves and inner magnetospheric ULF pulsations, and the impacts of magnetopause waves on the dynamics of the magnetopause and on the inner magnetosphere.

Chromospheric Transient Brightenings associated with Canceling Magnetic Features

  • Park, Soyoung;Chae, Jongchul;Park, Sunghong;Bong, Suchan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.130.1-130.1
    • /
    • 2012
  • Canceling magnetic features (CMFs) are likely to be a result of magnetic reconnection in the lower atmosphere of the Sun. CMFs are related with chromospheric phenomena such as brightening or jets. In order to observe the fine-scale and highly dynamical structures in the chromospheres, Fast Imaging Solar Spectrograph (FISS) was developed and installed at 1.6 m New Solar Telescope at Big Bear Solar Observatory. Using this FISS data we have studied chromospheric brightenings associated with CMFs. As a result, the chromospheric brightenings related with CMFs have stronger shock waves than one of other regions such as internetwork regions or unipolar magnetic elements

  • PDF

NST/FISS Observations of Ellerman bombs and Surges

  • Yang, Heesu;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.86.2-86.2
    • /
    • 2013
  • Ellerman bombs(EBs) are emission features at the wings of the H alpha spectral line. They are believed to be a kind of a magnetic reconnection feature in the low chromosphere or near photosphere. It was previously reported that surges often occur in association with EBs. However, previous observations were restricted to imaging observation. Using Fast Imaging Solar Spectrograph installed in New Solar Telescope at Big Bear Solar Observatory, California, we observed 5 EBs and associated surges with high-spatial and high-spectral resolutions. In this presentation, we will show the results and discuss the physical properties.

  • PDF

A STUDY OF SMALL FLARES ASSOCIATED WITH PLASMA BLOBS OUTFLOWING ALONG POST-CME RAYS

  • Kim, Yoo Jung;Kwon, Ryun-Young;Chae, Jongchul
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The recent study of Chae et al. (2017) found a one-to-one correspondence between plasma blobs outflowing along a ray formed after a coronal mass ejection (CME) and small X-ray flares. In the present work, we have examined the spatial configuration and the eruption process of the flares that are associated with the blobs by analyzing EUV images and magnetograms taken by the SDO/AIA and HMI. We found that the main flare and the successive small flares took place in a quadrupolar magnetic configuration characterized by predominant magnetic fields of positive polarity, two minor magnetic fragments of negative polarity, and a curved polarity inversion line between them, which suggests that the formation process of the blobs may be similar to that of the parent CME. We also found that the successive flares resulted in a gradual change of the quadrupolar magnetic configuration, and the relevant migration of flaring kernels. The three-dimensional geometry and the property of the current sheet, that is often supposed to be embedded in an observed post-CME ray, seem to keep changing because of mutual feedback between the successive flares and the temporal change of the magnetic field configuration. Our results suggest that the observed post-CME rays may not reflect the characteristics of the current sheet responsible for the impulsive phase of the flare.

A Brief Introduction of Current and Future Magnetospheric Missions

  • Yukinaga Miyashita
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.1-25
    • /
    • 2023
  • In this paper, I briefly introduce recently terminated, current, and future scientific spacecraft missions for in situ and remote-sensing observations of Earth's and other planetary magnetospheres as of February 2023. The spacecraft introduced here are Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms / Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (THEMIS / ARTEMIS), Magnetospheric Multiscale (MMS), Exploration of energization and Radiation in Geospace (ERG), Cusp Plasma Imaging Detector (CuPID), and EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) for recently terminated or currently operated missions for Earth's magnetosphere; Lunar Environment Heliospheric X-ray Imager (LEXI), Gateway, Solar wind Magneto-sphere Ionosphere Link Explorer (SMILE), HelioSwarm, Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM), Geostationary Transfer Orbit Satellite (GTOSat), GEOspace X-ray imager (GEO-X), Plasma Observatory, Magnetospheric Constellation (MagCon), self-Adaptive Magnetic reconnection Explorer (AME), and COnstellation of Radiation BElt Survey (CORBES) approved for launch or proposed for future missions for Earth's magnetosphere; BepiColombo for Mercury and Juno for Jupiter for current missions for planetary magnetospheres; Jupiter Icy Moons Explorer (JUICE) and Europa Clipper for Jupiter, Uranus Orbiter and Probe (UOP) for Uranus, and Neptune Odyssey for Neptune approved for launch or proposed for future missions for planetary magnetospheres. I discuss the recent trend and future direction of spacecraft missions as well as remaining challenges in magnetospheric research. I hope this paper will be a handy guide to the current status and trend of magnetospheric missions.

CHROMOSPHERIC MAGNETIC RECONNECTION ON THE SUN

  • CHAE JONGCHUL;CHOI BYUNG-Kyu;PARK MIN-JU
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.59-65
    • /
    • 2002
  • Solar observations support that magnetic reconnect ion ubiquitously occurs in the chromosphere as well as in the corona. It is now widely accepted that coronal magnetic reconnect ion is fast reconnect ion of the Petschek type, and is the main driver of solar flares. On the other hand, it has been thought that the traditional Sweet-Parker model may describe chromospheric reconnect ion without difficulty, since the electric conductivity in the chromoshphere is much lower than that in the corona. However, recent observations of cancelling magnetic features have suggested that chromospheric reconnect ion might proceed at a faster rate than the Sweet-Parker model predicts. We have applied the Sweet-Parker model and Petschek model to a well-observed cancelling magnetic feature. As a result, we found that the inflow speed of the Sweet-Parker reconnect ion is too small to explain the observed converging speed of the feature. On the other hand, the inflow speeds and outflow speeds of the Petschek reconnect ion are well compatible with observations. Moreover, we found that the Sweet-Parker type current sheet is subject to the ion-acoustic instability in the chromosphere, implying the Petschek mechanism may operate there. Our results strongly suggest that chromospheric reconnect ion is of the Petschek type.

Cancelling Magnetic Features on the Sun

  • Park, So-Young;Chae, Jong-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2011
  • A cancelling magnetic feature (CMF) is believed to be a result of magnetic reconnection in the low atmosphere of the Sun. In this work, we investigate the physical properties of CMFs, focusing on the rates of flux cancellation in CMFs and the dynamics of chromospheric phenomena coupled with CMFs. First, we have determined the specific rates of flux cancellation using the magnetograms taken by the Solar Optical Telescope (SOT) aboard the Hinode satellite. The specific rates determined with the SOT turned out to be systematically higher than those based on the data taken by the Michelson Doppler Imager (MDI) aborad the SOHO. Second, we analyzed transient Ca II brightenings associated with small-scale CMFs using the SOT/Hinode. We found that in most Ca II brightenings related to CMFs, and the Ca II intensity peaks after magnetic flux cancellation proceeds. Moreover, brightenings tend to appear as pairs of bright points of similar size and similar brightness overlying magnetic bipoles. To further study the brightening and dynamics of chromospherie features associated with CMFs, we have analyzed Fast Imaging Solar Spectrograph (FISS) data. From this data the Doppler motion of chromospheric features above a CMF changed from redshift to blueshift. The duration of such dynamics is very short being less than 2 minutes. These results are unexpected one and can not be explained by any pre-existing pictures of CMFs.

  • PDF