• Title/Summary/Keyword: Magnetic Reconnection

Search Result 68, Processing Time 0.025 seconds

AN EXPLANATION ON TRANSIENT BRIGHTENING BY MAGNETIC RECONNECTION THEORY

  • LI BI-QIANG;LI XIAO-QING;AI GUO-XIANG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.299-301
    • /
    • 1996
  • It. has been discovered that. active regions commonly have numerous flare-like transient. loop brightenings. We use a magnetic reconnection theory driven by a ponderamotive force on account. of the basic properties of a transient. brightening: lifetime a few mins, total energy $10^{25}\~10^{29}$ erg. The numerical results are consistent with the observations.

  • PDF

SMALL-SCALE Hα DYNAMIC FEATURES SUPPORTED BY CHROMO SPHERIC MAGNETIC RECONNECTION

  • LEE SANGWOO;YUN HONG SIK;CHAE JONGCHUL;GOODE PHILIP R.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.21-27
    • /
    • 2003
  • In the present study, we have investigated morphology and evolution of small-scale Ha dynamic features on the quiet sun by analyzing video magnetograms and high resolution Ha images simultaneously taken for 5 hours at Big Bear Solar Observatory on April 18, 1997. From comparisons between time sequential longitudinal magnetograms and H$\alpha$ images covering $150" {\times} 150"$, several small-scale H$\alpha$ dynamic features have been observed at a site of magnetic flux cancellation. A close relationship between such features and cancelling magnetic fluxes has been revealed temporarily and spatially. Our results support that material injection by chromospheric magnetic reconnect ion may be essential in supporting numerous small-scale H$\alpha$ dynamical absorption features, being in line with recent observational studies showing that material injection by chromospheric magnetic reconnect ion is essential for the formation of solar filaments.

Detection of Opposite Magnetic Polarity in a Light Bridge : Its Emergence and Cancellation in association with LB Fan-shaped Jets

  • Lim, Eun-Kyung;Yang, Heesu;Yurchyshyn, Vasyl;Chae, Jongchul;Song, Donguk;Madjarska1, Maria S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2020
  • Light bridges (LBs) are relatively bright structures that divide sunspot umbrae into two or more parts. Chromospheric LBs are known to be associated with various activities including fan-shaped jet-like ejections and brightenings. Although magnetic reconnection is frequently suggested to be responsible for such activities, not many studies presented firm evidence to support the scenario. We carry out magnetic field measurements and imaging spectroscopy of a LB where fan-shaped jet-like ejections occur with co-spatial brightenings at their footpoints. We study their fine photospheric structures and magnetic field changes using TiO images, Near-InfraRed Imaging Spectropolarimeter data, and Hα data taken by the 1.6 m Goode Solar Telescope. As a result, we detect magnetic flux emergence in the LB that is of opposite polarity to that of the sunspot. The new flux cancels with the pre-existing flux at a rate of 5.6×1018 Mx hr-1. Both recurrent jet-like ejections and their footpoint brightenings are initiated at the vicinity of the magnetic cancellation, and show apparent horizontal extension along the LB at a projected speed of 4.3 km s-1 to form the fan-shaped appearance. Based on these observations, we suggest that the fan-shaped ejections may have resulted due to slipping reconnection between the new flux emerging in the LB and the ambient sunspot field.

  • PDF

Ca II Transient Brightenings associated with Canceling Magnetic Features

  • Park, So-Young;Chae, Jong-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.96.2-96.2
    • /
    • 2011
  • We analyzed transient Ca II brightening associated with small-scale canceling magnetic features in the quiet Sun near disk center using Ca II H and NaD1 filter images of the SOT/Hinode. We found that in most Ca II brightening related to CMFs the Ca II intensity peaks after magnetic flux cancellation proceeds. Moreover, brightening tend to appear as pairs of bright points of similar size and similar brightness overlying magnetic bipoles. These results imply that magnetic reconnection taking place in the chromosphere or above may be in charge of CMFs.

  • PDF

RESULTS FROM THE YOHKOH SATELLITE

  • WATANABE TETSUYA
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.291-294
    • /
    • 1996
  • The .Japanese sun observing satellite, Yohkoh, has been operational for five years and her scientific instruments are still in good condition. They have revealed ample of evidences that solar flares were triggered by magnetic reconnection, which was, for the first time, clearly indicated to take place in the solar corona. Cusp structures in soft X-rays and a new type of hard X-ray sources at the top of flaring loops have strongly supported the scenario originally proposed by C-S-H-KP. Nonthermal energy input in hard X-rays and thermal energy estimated from soft X-rays are fundamentally consistent with the interpretation of thick-target and chromospheric-evaporation models (Neupert effect). X-ray jets, another discovery of Yohkoh, were also associated with magnetic reconnection, as a result of the interaction of emerging fluxes with pre-existing coronal loops. Temperature structures of active regions, quiet sun, and coronal holes had very dynamic differential-emission-measure (DEM) distributions and high-temperature tails of DEM were considered to come from the contribution of flare-like activity.

  • PDF

Collisionless Magnetic Reconnection and Dynamo Processes in a Spatially Rotating Magnetic Field

  • Lee, Junggi;Choe, G.S.;Song, Inhyeok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2016
  • Spatially rotating magnetic fields have been observed in the solar wind and in the Earth's magnetopause as well as in reversed field pinch (RFP) devices. Such field configurations have a similarity with extended current layers having a spatially varying plasma pressure instead of the spatially varying guide field. It is thus expected that magnetic reconnection may take place in a rotating magnetic field no less than in an extended current layer. We have investigated the spontaneous evolution of a collisionless plasma system embedding a rotating magnetic field with a two-and-a-half-dimensional electromagnetic particle-in-cell (PIC) simulation. In magnetohydrodynamics, magnetic flux can be decreased by diffusion in O-lines. In kinetic physics, however, an asymmetry of the velocity distribution function can generate new magnetic flux near O- and X-lines, hence a dynamo effect. We have found that a magnetic-flux-reducing diffusion phase and a magnetic-flux-increasing dynamo phase are alternating with a certain period. The temperature of the system also varies with the same period, showing a similarity to sawtooth oscillations in tokamaks. We have shown that a modified theory of sawtooth oscillations can explain the periodic behavior observed in the simulation. A strong guide field distorts the current layer as was observed in laboratory experiments. This distortion is smoothed out as magnetic islands fade away by the O-line diffusion, but is soon strengthened by the growth of magnetic islands. These processes are all repeating with a fixed period. Our results suggest that a rotating magnetic field configuration continuously undergoes deformation and relaxation in a short time-scale although it might look rather steady in a long-term view.

  • PDF