Browse > Article
http://dx.doi.org/10.5303/JKAS.2003.36.spc1.021

SMALL-SCALE Hα DYNAMIC FEATURES SUPPORTED BY CHROMO SPHERIC MAGNETIC RECONNECTION  

LEE SANGWOO (Astronomy Program, SEES, Seoul National University)
YUN HONG SIK (Astronomy Program, SEES, Seoul National University)
CHAE JONGCHUL (Department of Astronomy and Space Science, Chungnam National University)
GOODE PHILIP R. (Big Bear Solar Observatory, NJIT)
Publication Information
Journal of The Korean Astronomical Society / v.36, no.spc1, 2003 , pp. 21-27 More about this Journal
Abstract
In the present study, we have investigated morphology and evolution of small-scale Ha dynamic features on the quiet sun by analyzing video magnetograms and high resolution Ha images simultaneously taken for 5 hours at Big Bear Solar Observatory on April 18, 1997. From comparisons between time sequential longitudinal magnetograms and H$\alpha$ images covering $150" {\times} 150"$, several small-scale H$\alpha$ dynamic features have been observed at a site of magnetic flux cancellation. A close relationship between such features and cancelling magnetic fluxes has been revealed temporarily and spatially. Our results support that material injection by chromospheric magnetic reconnect ion may be essential in supporting numerous small-scale H$\alpha$ dynamical absorption features, being in line with recent observational studies showing that material injection by chromospheric magnetic reconnect ion is essential for the formation of solar filaments.
Keywords
small-scale H; chromospheric magnetic reconnection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tandberg-Hanssen, E. 1995, In The Nature of Solar Prominences, p. 114
2 van Ballegooijen, A. A., & Martens, P. C. H. 1989, Formation and eruption of solar prominences, ApJ, 343, 971   DOI
3 van Ballegooijen, A. A., & Martens, P. C. H. 1990, Magnetic fields in quiescent prominences, ApJ, 361, 283   DOI
4 van Ballegooijen, A. A., Priest, E. R., & Mackay, D. H. 2000, Mean field model for the formation of filament channels on the sun, ApJ, 539, 983   DOI   ScienceOn
5 Wang, J., Li, W., Denker, C., Lee, C., Wang, H., Goode, P. R., MacAllister, A., & Martin, S. F. 2000, Mini-filament eruption on the quiet sun. I. Observations at H$\alpha$ central line, ApJ, 530, 1071   DOI   ScienceOn
6 Woodard, M. F., &; Chae, J. 1999, Evidence for nonpotential magnetic fields in the quiet smi, Sol. Phys., 184, 239   DOI   ScienceOn
7 Zhang, J., Wang, J., Lee, C.-Y., & Wang, H. 2000, Macrospicules observed with H$\alpha$ againt the quiet solar disk, Sol. Phys,, 194, 59   DOI   ScienceOn
8 Gaizauskas, V., Mackay, & Harvey, K. L. 2001, Evolution of solar filament channels observed during a major poleward surge of photospheric magnetic flux, ApJ, 558, 888   DOI   ScienceOn
9 Hermans, L. M., & Martin, S. F.:1986, In A. I. Poland (ed.), Small-scale eruptive filaments on the quiet sun, Coronal and Prominence Plasmas, NASA Conf. Publ. 2442
10 Galsgaard, K., & Longbottom, A. W. 1999, Formation of solar prominence by flux convergence, ApJ, 510, 444   DOI   ScienceOn
11 Kuperus, M. 1996, The double inverse polarity paradigm, Sol. Phys., 169, 349
12 Litvinenko, Y. E. 1999, Photospheric magnetic reconnection and cancelling magnetic features on the sun, ApJ, 515, 435   DOI   ScienceOn
13 Litvinenko, Y. E., & Martin, S. F. 1999, Magnetic reconnection as the cause of a photospheric cancelling feature and mass flows in a filament, Sol. Phys., 190, 45   DOI
14 Martens, P. C., & Zwaan, C. 2001, Origin and evolution of filament-prominence systems, ApJ, 558, 872   DOI   ScienceOn
15 Martin, S. F. 1998, Conditions for the formation and maintenance of filaments, Sol. Phys., 182, 107   DOI   ScienceOn
16 Moore, R. L., Tang, F., Bohlin, J. D., & Golub, L. 1977, H-alpha macrospicules - Identification with EUV macrospicules and with flares in X-ray bright points, ApJ, 218, 286   DOI
17 Phest, E. R... Parnell, C. E., & Martin, S. F. 1994, A converging flux model of an X-ray bright point and an associated cancelling magnetic features, ApJ, 427, 459   DOI
18 Priest, E. R... van Ballegooijen, A. A., & Mackay, D. H 1996, A model for dextral and sinistral prominences, ApJ, 460, 530   DOI
19 Chae, J., Wang, H., Lee, C. Y., Goode, P., & Sch$\"{u}$le, U. 1998b, Chromospheric upflow events associated with transition region explosive events, ApJ, 504, L123   DOI   ScienceOn
20 Chae, J., Wang, H., Lee, C. Y., Goode, P., & Sch$\"{u}$le, U. 1998a, Photospheric magnetic field changes associated with transition region explosive events, ApJ, 497, L109   DOI   ScienceOn
21 Chae, J., Wang, H., Qiu, J., Goode, P. R., Strous, L., & Yun, H. S. 2001, The formation of a prominence in active region NOAA 8668. I. SOHO/MDI observations of magnetic field evolution, ApJ, 560, 476   DOI   ScienceOn
22 Ghae, J., Moon, Y.-J., Wang, H., & Yun, H. S. 2002, Flux cancellation rates and converging speeds of cancelling magnetic features, Sol. Phys., 207, 73   DOI   ScienceOn
23 DeVore, C. R., & Antiochos, S. K. 2000, Dynamical formation and stability of helical prominence magnetic fields, ApJ, 539, 954   DOI   ScienceOn
24 Labonte, B. J. 1979, Activity in the quiet sun. I - Observations of macrospicules in H-alpha and D3, Sol. Phys., 61, 283   DOI
25 Gaizauskas, V., Zirker, J. B., Sweetland, C., & Kovacs, A. 1997, Formation of a solar filament channel, ApJ, 479, 448   DOI   ScienceOn