• Title/Summary/Keyword: Magnetic Property

Search Result 665, Processing Time 0.027 seconds

Thermodynamic properties and structural geometry of KMgCl3·6H2O single crystals

  • Yoon, Hyo In;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.119-123
    • /
    • 2015
  • The thermodynamic properties and structural geometry of $KMgCl_3{\cdot}6H_2O$ were investigated using thermogravimetric analysis, differential scanning calorimetry, and nuclear magnetic resonance. The initial mass loss occurs around 351 K ($=T_d$), which is interpreted as the onset of partial thermal decomposition. Phase transition temperatures were found at 435 K ($=T_{C1}$) and 481 K ($=T_{C2}$). The temperature dependences of the spin-lattice relaxation time $T_1$ for the $^1H$ nucleus changes abruptly near $T_{C1}$. These changes are associated with changes in the geometry of the arrangement of octahedral water molecules.

Recycling of Waste Barium Hexaferrite Magnets (Barium Hexaferrite 폐자석의 재활용)

  • 박인용
    • Resources Recycling
    • /
    • v.9 no.2
    • /
    • pp.18-25
    • /
    • 2000
  • Magnetic and physical properties of sintered bodies prepare from waste sintered barium hexaferrite magnets which were come from fabrication process of isotropic permanent magnets were investigated. The properties of the sintered bodies were characterized by XRD, XRF, SEM, and BH curve tracer. After the waste permanent magnets were milled and granulated, the granules of the waste permanent magnet powders and the commercial granules were mixed with various proportions, pressed, and sintered. although the magnetic properties were decreased gradually with the content of waste magnet powder, the magnetic characteristics of the sintered magnets at $1150~1200^{\circ}C$ were comparable to those required for isotropic permanent magnets.

  • PDF

Magnetic Pulsed Compaction of nanostructured Al-Fe-Cr-Ti Powder and wear properties (Al-Fe-Cr-Ti 나노결정 합금분말의 자기펄스 성형 및 마모 특성)

  • Kim, Jun-Ho;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.528-530
    • /
    • 2008
  • The effect of consolidation temperature on the microstructure, density and mechanical properties (especially, wear property) of $Al_{92.5}-Fe_{2.5}-Cr_{2.5}-Ti_{2.5}$ alloy fabricated by gas atomization and magnetic pulsed compaction was investigated. All consolidated alloys consisted of homogeneously distributed fine-grained fcc-Al matrix and intermetallic compounds. Relative higher mechanical properties in the MPCed specimen were attributed to the retention of the nanostructure in consolidated bulk without cracks. The as consolidated bulk by magnetic pulsed compaction showed the enhanced wear properties than that of a general consolidation process. In addition, the wear mechanism and fracture mode of MPCed bulk was discussed.

  • PDF

Electrical Properties of a High Tc Superconductor for Renewed Electric Power Energy

  • Lee Sang-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.371-375
    • /
    • 2006
  • Effects of $Ag_2O$ doping on the electromagnetic properties in the BiSrCaCuO superconductor. The electromagnetic properties of doped and undoped $Ag_2O$ in the BiSrCaCuO superconductor were evaluated to investigate the contribution of the pinning centers. It was confirmed experimentally that a larger amount of magnetic flux was trapped in the $Ag_2O$ doped sample than in the undoped one, indicating that the pinning centers of magnetic flux are related closely to the occurrence of the magnetic effect. We have fabricated superconductor ceramics by the chemical process. A high Tc superconductor with a nominal composition of $Bi_2Sr_2Ca_2Cu_3O_y$ was prepared by the organic metal salts method. Experimental results suggest that the intermediate phase formed before the formation of the superconductor phase may be the most important factor. The relation between electromagnetic properties of Bi HTS and the external applied magnetic field was studied. The electrical resistance of the superconductor was increased by the application of the external magnetic field. But the increase in the electrical resistance continues even after the removal of the magnetic field. The reason is as follows; the magnetic flux due to the external magnetic field penetrates through the superconductor and the penetrated magnetic flux is trapped after the removal of the magnetic flux. During the sintering, doped $Ag_2O$ was converted to Ag particles that were finely dispersed in superconductor samples. It is considered that the area where normal conduction takes place increases by adding $Ag_2O$ and the magnetic flux penetrating through the sample increases. The results suggested that $Ag_2O$ acts to amplify pinning centers of magnetic flux, contributing to the occurrence of the electromagnetic properties.

Examination of Two-Dimensional Magnetic Properties in a 5-Leg-Different- Volume- V-Connection- Transformer Core

  • Urata Shinya;Shimoji Hiroyasu;Todaka Takashi;Enokizono Masato
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.243-247
    • /
    • 2005
  • The Different-volume- V-connection transformer is known as an electric power source that can supply 3-phase electric power and single-phase electric power at the same time. Usually, we use two single-phase transformers that have different volumes. In this paper, we propose the use of a 3-phase 5-leg transformer with the different-volume- V-connection. And, we examine the magnetic properties of the 5-leg core model with the different-volume- V-connection. The magnetic properties of cores with the different-volume- V-connection are compared with those with the delta-connection. In order to express the magnetic anisotropy of the core materials and to calculate the iron loss directly, the two-dimensional vector magnetic property is considered with the E&SS modeling in the simulation.

Superconductivty and Magnetic Properties of Tb-substituted $RuSr_2(Eu_{1.34}Ce_{0.66})Cu_2O_z$ (Tb이 치환된 $RuSr_2(Eu_{1.34}Ce_{0.66})Cu_2O_z$ 계의 초전도 및 자기적 특성)

  • Lee, H.K.;Lee, M.S.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.110-115
    • /
    • 2012
  • Samples with nominal compositions of $RuSr_2(Eu_{1.34-x}Tb_xCe_{0.66})Cu_2O_z$ (x = 0, 0.67) were prepared and their superconductivity and magnetic properties were compared to shed light on the effect of Tb substitution for Eu. X-ray diffraction measurements indicate that the Tb substitution resulted in a decrease in both a and c lattice parameters in consistent with ionic size difference between Eu and Tb. Contrary to the Tb-free sample, no superconducting transition behavior is observed in the Tb-sustituted sample. It is also found that the Tb substitution for Eu significantly increases the weak-ferromagnetic component of the field-cooled magnetic susceptibility as well as an increase in the magnetic ordering temperature. These results suggest that the magnetic state of the Ru sublattice is significantly affected by the Tb substitution for Eu.

Core loss Calculation of a Permanent Magnetic Motor Considering Mechanical Stress (영구자석 전동기 철심의 기계적 응력을 고려한 철손 해석)

  • Kim, Ji-Hyun;Ha, Kyung-Ho;Kwon, Oh-Yeoul;Kim, Jae-Kwan;La, Min-Soo;Lee, Sun-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.851_852
    • /
    • 2009
  • Shrink fitting which is assembling process to fix stator core on the motor frame is widely used at the mass production line of motors because of cost and productivity. This process produces compressive stress on a stator core, which causes negative effect for example, core and copper losses on motor performance. Magnetic properties of electrical steel are effected by both compressive and tensile and thermal stresses. Electromagnetic field analysis is considered one of the effective process since one can predict motor performance including core loss precisely. This method can consider non linear magnetic property with magnetic saturation which is typical electrical steel behavior. However this method is strongly depended on non linear magnetic data, one may have different calculation result whether considering mechanical stress or not. This study describes magnetic field analysis of a motor considering mechanical stress from shrink fitting. Analysis results are compared with each stress-free and stressed condition.

  • PDF

Fabrication and Properties of MI Sensor Device using CoZrNb Films (CoZrNb막을 이용한 MI센서 소자의 제작 및 특성)

  • Hur, J.;Kim, Y.H.;Shin, K.H.;Sa-Gong, G.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • Magneto-Impedance(MI) sensor is a highly sensitive sensor, which was able to detect a weak geomagnetic field. It also has a merit to be able to build in the low power system. In this study, their magnetic permeability and anisotropy field(H$\sub$k/) as a function of some different thickness of sputtered amorphous CoZrNb films with zero-magnetostriction and soft magnetic property are investigated. In order to make a uniaxial anisotropy, film was subjected to the post annealing in a static magnetic field with 1KOe intensity at 250, 300, and 320$^{\circ}C$ respectively for 2 hours. Magnetic properties of films are measured by using a M-H loop tracer. Magnetic permeability of a film is measured over the frequency range from 1 ㎒ to 750㎒. By thickening a CoZrNb film relatively, magnetic permeability and impedance are examine to design the. MI sensor which drives at 50㎒, and thereof fabricated the MI sensor which drives at the 50㎒.

Permeability of CoZrNb film with thickness (CoZrNb막의 두께에 따른 투자율의 변화)

  • Hoe, J.;Kim, Y.H.;Shin, K.H.;Sa-Gong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.443-446
    • /
    • 2001
  • MI(Magneto-Impedance) sensor which is made by thin films has significantly high detecting sensitivity in weak magnetic field. It also has a merit to be able to build in low power system. Its structure is simple, which makes it easier to prepare a miniature. In this study, its magnetic permeability and anisotropy field(H$\sub$k/) as a function of a thickness of sputtered amorphous CoZrNb thin film with high saturation magnetostriction and excellent soft magnetic property are investigated. In order to make a uniaxial anisotropy, thin film was subjected to post annealing with a static magnetic field with 1KOe intensity at 250, 300, and 320$^{\circ}C$ for 2 hour. Anisotropy field(H$\sub$k/)of thin film is measured by using MH loop tracer. Its magnetic permeability of thin film is measured over the frequency range from 1 MHz to 750MHz. It has shown that the magnetic permeability of amorphous CoZrNb thin film is decreased due to the skin effect with increasing a thickness of CoZrNb thin film, and hence its driving frequency is lowered.

  • PDF

Impedance of CoZrNb Film as a Function of Frequency (CoZrNb막의 주파수에 따른 임피던스의 변화)

  • Hur, J.;Kim, Y.H.;Shin, K.H.;Park, K.I.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.778-781
    • /
    • 2002
  • MI(Magneto-Impedance) sensor which is made by thin films has significantly high detecting sensitivity in weak magnetic field. It also has a merit to be able to build in the low power system. Its structure is simple, which makes it easier to prepare a miniature. In this study, its magnetic permeability and anisotropy field$(H_k)$ as a function of a thickness of sputtered amorphous CoZrNb films with zero-magnetostriction and excellent soft magnetic property are investigated. In order to make a uniaxial anisotropy, film was subjected to the post annealing in a static magnetic field with 1KOe intensity at 250, 300, and $320^{\circ}C}$ respectively for 2 hours. Anisotropy field$(H_k)$ of film is measured by using a MH loop tracer. Its magnetic permeability of a film is measured over the frequency range from 1 MHz to 750MHz. It has shown that the magnetic permeability of amorphous CoZrNb film is decreased due to the skin effect with increasing a thickness of the CoZrNb film, and hence its driving frequency is lowered. And, it was examined on the permeability and impedance to fabricate the MI sensor which acts at a low frequency by thickening a CoZrNb film relatively.

  • PDF