• Title/Summary/Keyword: Magnetic Motion

Search Result 718, Processing Time 0.028 seconds

Dynamic response of concrete beams reinforced by Fe2O3 nanoparticles subjected to magnetic field and earthquake load

  • Mohammadian, Hossein;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.589-598
    • /
    • 2017
  • In this paper, dynamic response of the horizontal concrete beam subjected to seismic ground excitation is investigated. The structure is reinforced by $Fe_2O_3$ nanoparticles which have the magnetic properties. The hyperbolic shear deformation beam theory (HSDBT) is used for mathematical modeling of the structure. Based on the Mori-Tanaka model, the effective material properties of concrete beam is calculated considering the agglomeration of $Fe_2O_3$ nanoparticles. Applying energy method and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized for numerical solution of the motion equations. The effects of different parameters such as volume fraction and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field, boundary conditions and geometrical parameters of concrete beam are studied on the dynamic response of the structure. In order to validation of this work, an exact solution is used for comparing the numerical and analytical results. The results indicated that applying magnetic field decreases the of the structure up to 54 percent. In addition, increase too much the magnetic field (Hx>5e8 A/m) does not considerable effect on the reduction of the maximum dynamic displacement.

Physical Therapy Following Arthroscopic Rotator Cuff Repair with Graft Augmentation: A Case Report with Magnetic Resonance Imaging

  • Kim, Hyun-Joong;Lee, Seungwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.463-469
    • /
    • 2021
  • Objective: If non-surgical treatment fails, arthroscopic rotator cuff repair (ARCR) is recommended, and ARCR considers graft augmentation in consideration of size, direction, and re-tear. It is reported to have potential benefits by improving the healing rate as it can fill the gaps that have been left behind. The purpose of this study is to investigate the effect of structural changes observed after ARCR on muscle action through magnetic resonance imaging and to investigate the effect of appropriate physical therapy required for graft augmentation in the general ARCR rehabilitation protocol. Case presentation: A 47-year-old male hospitalized for postoperative rehabilitation following ARCR participated in a 5-week physical therapy intervention. The postoperative day was 6 months, but due to shooting pain and shoulder dysfunction,and the movement of the shoulder was compensatory motion, not normal motion. Physical agents, manual therapy, and supervised exercise for 110 minutes per session were performed 3 times a week, and pain intensity, range of motion, function, and strength were evaluated. Results: As a result of the study, the patient showed positive improvement in pain intensity, range of motion, function, and strength. In addition, normal scapulohumeral rhythm movement was observed. Conclusions: According to the results of this case, appropriate physical therapy according to the compensatory motion shown in the structural changes after ARCR can positively improve the pain intensity, range of motion, function, and strength of ARCR patients.

Development of The Magnetic -Electrolytic-Abrasive Polishing (MEAP) (1st) -Effect of magnetic field on electrolytic finishing process- (자기전해복합경면가공의 개발에 관한 연구(제 1보) -전해공정에 미치는 자기장의 영향-)

  • 김정두
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.25-30
    • /
    • 1995
  • A new finishing process, magnetic-electrolytic-abrasive polishing(MEAP), combining Lorentz' force effect in the traditional electrolytic finishing process was developed to realize the high efficiency as well as high surface quality of finishing . The paper describes the theoretical basis about the modification of electrolytic ions motion by the magnetic field. The effect of magnetic field on the electrolytic process was discussed was and analyzed from the result of model test.

  • PDF

A Study on the Surface Control of a Magnetic Fluid (자성유체의 표면제어에 관한 연구)

  • Shin, J.O.;Rhee, E.J.;Park, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.65-69
    • /
    • 2001
  • In this study, the deformation of the free surface motion of a magnetic fluid for the change in electromagnetic force is discussed. In case, magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. Thus, the device of a magnetic fluid proposed the complete zero-leakage Sealing and the surface actuator. The device of surface deformation as well comparison between numerical simulation and experiments as will be presented.

  • PDF

Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects

  • Esmaeili, Hemat Ali;Khaki, Mehran;Abbasi, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.359-368
    • /
    • 2018
  • This paper deals with the dynamic stability of nanocomposite pipes conveying pulsating ferrofluid. The pipe is reinforced by carbon nanotubes (CNTs) where the agglomeration of CNTs are considered based on Mori-Tanaka model. Due to the existence of CNTs and ferrofluid flow, the structure and fluid are subjected to axial magnetic field. Based on Navier-Stokes equation and considering the body forced induced by magnetic field, the external force of fluid to the pipe is derived. For mathematical modeling of the pipe, the first order shear deformation theory (FSDT) is used where the energy method and Hamilton's principle are used for obtaining the motion equations. Using harmonic differential quadrature method (HDQM) and Bolotin's method, the motion equations are solved for calculating the excitation frequency and dynamic instability region (DIR) of the structure. The influences of different parameters such as volume fraction and agglomeration of CNTs, magnetic field, structural damping, viscoelastic medium, fluid velocity and boundary conditions are shown on the DIR of the structure. Results show that with considering agglomeration of CNTs, the DIR shifts to the lower excitation frequencies. In addition, the DIR of the structure will be happened at higher excitation frequencies with increasing the magnetic field.

Effects of Sputtering Pressure on the Magnetization Reversal Process and Perpendicular Magnetic Anisotropy of Co/Pd Multilayered Thin Films (스퍼터링 압력이 Co/Pd 다층박막의 자화반전 및 수직자기 이방성에 미치는 영향)

  • 오훈상;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.256-262
    • /
    • 1994
  • $200{\AA}$ thick Co/Pd multilayered thin films were fabricated by sputtering. Two thicknesses of cobalt sublayer, $2{\AA}$ and $4{\AA}$ were chosen and the effects of sputtering pressure on the perpendicular magnetic anisotropy were investigated. It has been found that the optimum pressure for maximum perpendicular magnetic anisotropy(PMA) existed and the pressure for maximum PMA was lower for the multilayer with $2{\AA}$ cobalt layer than that with $4{\AA}$ cobalt thickness. As the sputtering gas presssure increased, domain wall motion with magnetization became difficult and the predominant mode of magnetization reversal changed from domain wall motion to magnetic moment rotation. It turned out that the perpendicular magnetic anisotropy was higher in case of $2{\AA}$ cobalt thickness than $4{\AA}$ cobait thickness.

  • PDF

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.

Design of e-compass with terrestrial magnetic compensation for a ship (선박용 지자기 보정 기능을 갖는 이동식 전자컴퍼스 개발)

  • Hong, Chang-Hyun;Kim, Yung-Chul;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.381-382
    • /
    • 2007
  • Recently fishing industry is interested in efficient and automated fishing implementations to reach the level of the international leading technology. One of the important device used in fishing boat is an automated electric compass that harnesses the GPS and terrestrial magnetic sensor. The electric compass is desired to be minimized in size while keeping a high effectiveness in the characteristic of a magnetic compass. This device also can be used as a heading angle sensor to construct auto-navigation system in a small size of ships. However, there exists measurement errors induced from the slope of terrestrial magnetic sensor caused by the motion of boat. In this paper, a method has been proposed removing the measurement error arising from the slope of terrestrial magnetic sensor when the ship is in motion. We have designed a sensor with two DOF(degree of freedom) and a weight to maintain the horizontality of the sensor. Through this research, the hardware has been designed and also a test has been performed. The test shows a promissory result.

  • PDF

Detection of a Moving Object by Multi-channel SQUID Magnetometer System (다중채널 고온초전도 양자간섭소자 자력계 시스템을 이용한 이동 물체 탐지)

  • Lee, H.J.;Lee, S.-M.;Lee, H.N.;Yun, J.H.;Moon, S.H.;Lim, S.H.;Kim, D.Y.;Oh, B.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.56-59
    • /
    • 2001
  • We have constructed a multi-channel SQUID magnetometer system for localization and classification of magnetic targets. Ten SQUID magnetometers were arranged to measure 5 independent components of 3 $\times$ 3 magnetic field gradient tensor. To get gradient from the difference of magnetic field measurements, we carefully balanced magnetometers. SQUIDs with slotted washer were used for operation in an unshielded laboratory environment, and noise characteristic in the laboratory was measured. With the multi-channel SQUID magnetometer system, we have successfully traced the motion of a bar magnet moving around it at a distance of about 1 m. In the urban environment, the drift of uniform magnetic field due to the irregular motion of a large magnetic body at distance and earth field causes an error in the position calculation, and this results in the distortion of the calculated trajectory. In this paper, we present the architecture and the performance of the system.

  • PDF

Study of Short-Term Sunspot Motion toward Flare Onset Prediction

  • Suematsu, Yoshinori;Yatini, Clara Y.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.87.2-87.2
    • /
    • 2011
  • Proper motion of sunspots in several active regions was studied to detect their indicator on flare onset, using data from the Solar Flare Telescope at Mitaka (four flaring active regions), TRACE (e.g. NOAA 0424, M1.7 flare on 5 Aug. 2003) and Hinode (e.g. NOAA 10930, X3.4 flare on 13 Dec. 2006). The proper motion of individual sunspots was derived using a local correlation tracking method. As a result, we found that the sunspots that are located under or close to a part of chromospheric flaring patches showed a change in their moving direction prior to the flare onset. The change in their movements took place a half to two hours before the flare onset. On the other hand, sunspots in non-flaring areas or non-flaring active regions did not show this kind of change. It is likely, therefore, that if a sunspot shows the particular movement, a chromospheric flare is to occur in its nearby region. In the most active regions, the part of flare ribbons was located on an emerging bipolar pair of sunspots. The disturbance in the usual motion of the bipolar sunspots and in other sunspots as well can be interpreted as a sign of magnetic shear development leading to final magnetic energy buildup before its sudden release. We suggest that the change in sunspot motion in a short time scale prior to the flare onset can be regarded as a good indicator in predicting the onset timing and location of chromospheric flares.

  • PDF