• Title/Summary/Keyword: Magnetic Metal Films

Search Result 106, Processing Time 0.025 seconds

Epitaxial growth of Pt Thin Film on Basal-Plane Sapphire Using RF Magnetron Sputtering

  • 이종철;김신철;송종환;이충만
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.41-41
    • /
    • 1998
  • Rare earth metal films have been used as a buffer layer for growing ferroelectric t thin film or a seed layer for magnetic multilayer. But when it was deposited on s semiconductor substrates for the application of magneto-optic (MO) storage media, it i is difficult to exactly measure magnetic cons떠nts due to shunting current, and so it n needs to grow metal films on insulator substrate to reduce such effect. Recently, it w was reported that ultra-thin Pt layer were epitaxially grown on A12O:J by ion beam s sputtering in 비떠 high vacuum and it can be used as a seed layer for the growth of C Co-contained magnetic multilayer. In this stu$\phi$, Pt thin film were epi떠xially grown on AI2D3 ($\alpha$)OJ) by RF magnetron s sputtering. The crystalline structure was analyzed by transmission electron microscope ( (TEM) and Rutherford Back Scattering (RBS)/Ion Channeling. In TEM study, Pt was b believed to be twinned on AI잉3($\alpha$)01) su$\pi$ace about Pt(ll1) plane.Moreover, RBS c channeling spectra showed that minimum scattering yield of Pt(111)/AI2O:J(1$\alpha$)OJ) was 4 4% and Pt(11J)/AI2D3($\alpha$)OJ) had 3-fold symmetry.

  • PDF

Epitaxial Overlayers vs Alloy Formation at Aluminum-Transition Metal Interfaces

  • Smith, R.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.29-29
    • /
    • 1999
  • The synthesis of layered structures on the nanometer scale has become essential for continued improvements in the operation of various electronic and magnetic devices. Abrupt metal-metal interfaces are desired for applications ranging from metallization in semiconductor devices to fabrication of magnetoresistive tunnel junctions for read heads on magnetic disk drives. In particular, characterizing the interface structure between various transition metals (TM) and aluminum is desirable. We have used the techniques of MeV ion backscattering and channeling (HEIS), x-ray photoemission (ZPS), x-ray photoelectron diffraction(XPD), low-energy ion scattering (LEIS), and low-energy electron diffraction(LEED), together with computer simulations using embedded atom potentials, to study solid-solid interface structure for thin films of Ni, Fe, Co, Pd, Ti, and Ag on Al(001), Al(110) and Al(111) surfaces. Considerations of lattice matching, surface energies, or compound formation energies alone do not adequately predict our result, We find that those metals with metallic radii smaller than Al(e.g. Ni, Fe, Co, Pd) tend to form alloys at the TM-Al interface, while those atoms with larger atomic radii(e.g. Ti, Ag) form epitaxial overlayers. Thus we are led to consider models in which the strain energy associated with alloy formation becomes a kinetic barrier to alloying. Furthermore, we observe the formation of metastable fcc Ti up to a critical thickness of 5 monolayers on Al(001) and Al(110). For Ag films we observe arbitrarily thick epitaxial growth exceeding 30 monolayers with some Al alloying at the interface, possible driven by interface strain relief. Typical examples of these interface structures will be discussed.

  • PDF

The Effect of Energy-absorbing layers on Micro-patterning of Magnetic Metal Films using Nd:YAG Laser (Nd:YAG Laser를 이용한 자성금속막의 패턴 식각에 있어서 에너지 흡수층이 미치는 영향)

  • 이주현;채상훈;서영준;송재성;민복기;안승준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.538-544
    • /
    • 2000
  • The laser patterning of sputter-deposited CoNdZr/Cu/CoNbZr multi-layered films had been tried using Nd:YAG laser. However generally it is very difficult to remove metal films because of their high reflectance of the laser on the surfaces. As a counterproposal for this problem authors for the first time tried to deposit energy-absorbing layers on the metal films and then irradiated the laser on the surfaces of energy-absorbing layers. Here the energy-absorbing layers consisted of laser energy-absorbing fine powders and binding polymers. Three kinds of powders for the energy-absorbing layers had been used to see the difference in the pattern formation with the degree of laser energy absorption. They were electrically conductive silver powders insulating BaTiO$_3$powder and semiconducting carbon powder. Remarkable difference in width of the formed pattern and the roughness of pattern edge were observed with the characteristic of the powder for the energy-absorbing layer. The pattern width using carbon paste was about three times larger than that using BaTiO$_3$paste. It was observed that the energy-absorbing layer with carbon was the most effective on this micro-patterning.

  • PDF

Sol-Gel Synthesis and Transport Properties of $La_{2/3}Sr_{1/3}Mn_{0.99}{^{57}}Fe_{0.01}O_3$Granular Thin Films

  • Shim, In-Bo;Kim, Sung-Baek;Ahn, Geun-Young;Yun, Sung-Roe;Cho, Young-Suk;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.1-4
    • /
    • 2001
  • We have used acetic acids ethanol and distilled water as a solvent to synthesize $La_{2/3}Sr_{1/3}Mn_{0.99}{^{57}}Fe_{0.01}O_3$(LSMFO) precursor. Crack-free LSMFO granular polycrystalline thin films have been deposited on thermally oxidized silicon substrates by spin coaling. The dependence of crystallization, surface morphology, magnetic and transport properties on annealing temperature was investigated. With increasing annealing temperature, the metal-semiconductor (insulator) transition temperature and the magnetic moment decrease while the resistivity increases. The lattice constants remain almost unchanged. For LSMFO thin films, spin-dependent interfacial tunneling and/or scattering magnetoresistance were observed. Our results indicate that the annealing temperature is very important in determining the intrinsic and extrinsic magnetotransport properties.

  • PDF

Electronic structure studies of CoFeRO (R=Hf,La,Nb) thin films by X-ray absorption spectroscopy

  • Song, J.H.;Gautam, S.;Chae, K.H.;Asokan, K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.378-378
    • /
    • 2010
  • We report the electronic structure of CoFeO-R (R=Hf, La, Nb) thin films studied by x-ray absorption spectroscopy (XAS). These ferrites thin films were prepared by pulsed laser deposition method and characterized by XAS measurements at O K-, Co and Fe L-edges. The O K-edge spectra suggest that there is a strong hybridization between O 2p and 3d electrons of transition metal cations and Fe $L_{3,2}$-edge spectra indicate that Fe-ions exist in $Fe^{2+}$ with tetrahedral site of the spinel structure. Divalent Co ions is also distributed in tetrahedral site with rare earth ions goes to octahedral sites of spinel structure. X-ray magnetic circular dichroism (XMCD) is also used to explain the symmetry and magnetic nature dependence on rare-earth ions.

  • PDF

Magnetonic Resistance Properties of Semiconductor Thin Films by Plasmon Effect on Fabricated Si(100) Substrate (플라즈몬 효과에 의한 실리콘 기판위에 증착된 반도체 박막의 자기저항특성)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.105-109
    • /
    • 2019
  • Plasmons have conductive properties using the effect of amplifying magnetic and electric fields around metal particles. The collective movement of free electrons in metal particles induces and produces the generation of plasmon. Because the plasmon is concentrated on the surface of the nanoparticles, it is also called the surface plasmon. The polarizing effect of plasma on the surface is similar to the principle of surface currents occurring in insulators. In this study, it was found the conditions under which plasma is produced in SiOC insulators and studied the electrical properties of SiOC insulators that are improved in conductivity by plasmons. Due to the heat treatment temperature of thin film, plasma formation was shown differently, metal particles were used with normal aluminium, SiOC thin films were treated with heat at 60 degrees, conductivity was improved dramatically, and heat treatment at higher temperatures was found to be less conductivity.

Magnetic Properties of CrO2 Thin Films Deposited by Thermal Deposition (열분해법으로 형성된 산화크롬 박막의 자기적 특성)

  • Choi, Hyun-Ju;Lim, Dae-Soon;Lee, Jeon-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.653-656
    • /
    • 2004
  • We report the magnetic properties, microstructures, and crystal orientations of the CrO$_2$ thin films on TiO$_2$ single crystals. CrO$_2$ thin films were deposited by thermal decompositions with CrO$_3$ source materials. The microstructure of (110) oriented CrO$_2$ thin films deposited on (110) TiO$_2$ single crystals were uniform. As the oxygen flow rates increased, the resistivity, coercive field, and remnant magnetization of the CrO$_2$ thin films on TiO$_2$ single crystals decreased.

The correlation between Spin Polarized Tunneling and Magnetic Moment in Co-Mn and Co-Fe Alloy Films (Co1-xFex와 Co1-xMnx 강자성 전이 합금 박막의 자기 모멘트와 터널 접합에 의한 스핀 편극치의 상관관계 연구)

  • Choi, Deung-Jang;Jang, Eun-Young;Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.5
    • /
    • pp.194-197
    • /
    • 2007
  • Understanding the spin polarization (P) has been an ongoing research challenge. The $Co_{1-x}Mn_x$ (x=0.27, 1) and $Co_{1-x}Fe_x$ (x=0, 0.5, 1) films were prepared using UHV-MBE system. For these films, the magnetic properties and spin polarization were investigated using SQUID and Meservey-Tedrow technique, respectively. Although measured P is uncorrelated to the bulk magnetic moment (M) in Co-Fe and Ni-Fe alloy films, it correlates with M in some alloys such as Co-Mn and Ni-Cu. The results can be understood by the tunneling currents made up of the hybridized sp-d electrons near the Fermi-energy level. Our work shows the feasibility to tailor new materials with large P values.

Highly Stable Photoluminescent and Magnetic Multilayers Using Nucleophilic Substitution Reaction in Organic Media

  • Jo, Jin-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.262-262
    • /
    • 2010
  • We introduce a novel and efficient strategy for producing free-standing functional films via photo-crosslinking and electrostatic layer-by-layer (LbL) assembly, which can allow the buildup of hydrophilic multilayers onto hydrophobic surfaces. Hydrophobic multilayers were deposited on ionic substrates by a photo-crosslinking LbL process using photo-crosslinkable polymers. The photo-crosslinked surface was converted to an anionic surface by excess UV light irradiation. This treatment allowed also the stable adhesion between metal electrode or cationic polyelectrolyte and hydrophobic multilayers. After dissolving the ionic substrates in water, the formed free-standing films exhibited unique functionalities of inserted components within hydrophobic and/or hydrophilic multilayers.

  • PDF

Nanoscale Microstructure and Magnetic Transport in AIN/Co/AIN/Co… Discontinuous Multilayers

  • Yang, C.J.;Zhang, M.;Zhang, Z.D.;Han, J.S.
    • Journal of Magnetics
    • /
    • v.8 no.2
    • /
    • pp.98-102
    • /
    • 2003
  • Microstructure and magnetic transport phenomina in rf sputtered AIN/CO type ten- layered discontinuous films of nanoscaled [AIN(3 nm)/Co(t nm)]…$_10$ with t$_Co$=1.0∼2.0 nm have been investigated. The microstructure and tunneling magnetic resistance of the samples are strongly dependent on the thickness of Co layer, Negative tunneling magneto-resistance due to the spin-dependent transport has been observed along the current-in-plane configuration in the samples having the Co layers below 1.6 nm thick. When the thickness of Co layer was less than 1.2 nm, randomly oriented granular Co particles were completely isolated and embedded in amorphous AIN matrix, and the films showed the superparamagnetic behavior with a high MR value of ${\Delta}p/p_0$=1.8%. As t$_Co$ increases, a transition from the regime of co-existence of superparamagnetic and ferromagnetic behaviors to ferromagnetic behavior was observed. funneling barrier called “decay length far tunneling” fur the films haying the thickness of Co layer from 1.4 to 1.6 nm was measured to be ranged from 0.004 to 0.021 ${\AA}$$^{-1}$.