• Title/Summary/Keyword: Magnetic Induction Communication

Search Result 30, Processing Time 0.031 seconds

Analysis on Communication Channels for Magnetic Induction Based Underwater Wireless Communication Networks (자기 유도 기반 수중 통신 네트워크를 위한 통신 채널 분석)

  • Wu, Shanai;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.985-988
    • /
    • 2017
  • Magnetic induction (MI) based communication is one of the near-field communication techniques, which makes use of induced magnetic fields. In order to develop the MI based underwater communication networks, we evaluate and compare the loss performance between direct-MI and MI-waveguide in underwater environment.

Design and Implementation of Magnetic Induction based Wireless Underground Communication System Supporting Distance Measurement

  • Kim, Min-Joon;Chae, Sung-Hun;Shim, Young-Bo;Lee, Dong-Hyun;Kim, Myung-Jin;Moon, Yeon-Kug;Kwon, Kon-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4227-4240
    • /
    • 2019
  • In this paper, we present our proposed magnetic induction based wireless communication system. The proposed system is designed to perform communication as well as distance measurement in underground environments. In order to improve the communication quality, we propose and implement the adaptive channel compensation technique. Based on the fact that the channel may be fast time-varying, we keep track of the channel status each time the data is received and accordingly compensate the channel coefficient for any change in the channel status. By using the proposed compensation technique, the developed platform can reliably communicate over distances of 10m while the packet error rate is being maintained under 5%. We also implement the distance measurement block that is useful for various applications that should promptly estimate the location of nearby nodes in communication. The distance between two nodes in communication is estimated by generating a table describing pairs of the magnetic signal strength and the corresponding distance. The experiment result shows that the platform can estimate the distance of a node located within 10m range with the measurement error less than 50cm.

Battery Charging System using Magnetic Induction (자기유도를 이용한 배터리 충전 시스템)

  • Lim, Ji-Hun;Han, Ki-Dong;Park, Dong-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2239-2244
    • /
    • 2013
  • Industrial machines have constraints on movement due to its wire for power supply. Recently, the research on wireless power supply for industrial machine which is required to move freely is receiving a lot of attention. In this paper, we suggest a magnetic induction system which can charge a equipment's battery with wireless at a close range. The system was designed to operate at 13.56 MHz and a distance of 20~30 mm between the transmitting and the receiving power module. From experiment, it was found that it takes about 135 minutes for charging the battery with about 15 V using the proposed system.

Magnetic Induction Communication System for Electric Vehicle on Smart Grid (스마트 그리드 전기자동차를 위한 자기장 통신 시스템 구현 연구)

  • Lee, Jong-Min;Chang, Woo-Hyuk;Jung, Bang-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1381-1389
    • /
    • 2010
  • The smart grid technology is expected to significantly improve energy efficiency by dynamic power supply. One of its application is the Vehicle-to-Grid(V2G) that utilizes an electric vehicle's battery as a household storage battery. Meanwhile, a lot of researches are recently investigated in the area of wireless energy transfer technology because of its convenience and safety in charging a battery. With the wireless energy transfer infrastructure a wireless magnetic induction communication technique can help the dynamic power supply of the smart grid more efficient. In this paper, we propose a wireless magnetic induction communication sion cowhich includes data transmission and location-aware functions. We expect the sion cohelp the smart grid to control power supply more efficiently. We also developed its test-bed and evaluated the performance.

Reduction of Leakage Magnetic Fields in Low Frequency WPT System Using Soft Magnetic Materials (연자성체를 이용한 저주파 무선전력전송 시스템의 누설 자기장 저감)

  • Lee, In-Gon;Kim, Nam;Cho, In-Kui;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.76-79
    • /
    • 2017
  • This paper presents the electromagnetic shielding structure for low frequency wireless power transfer system with magnetic induction method using soft magnetic materials. Soft magnetic materials have advantages such as high permeability and low magnetic loss, but have undesirable effect of power loss by eddy current. To overcome this, we proposed the patterned soft magnetic material to suppress the eddy current path. For validity of this paper, we simulated the coil transfer efficiency and the radiated electromagnetic field, and fabricated the proposed structure using 79-permalloy. The measured results shows good agreements with the simulated results and reduction of the radiated electromagnetic field compared to commercial ferrite plate.

Characteristics of the Voltages between the Communication Lines and Ground Induced by the Adjacent Artificial High-Voltage or Current ELF Source

  • Lee, Sang-Mu;Choi, Mun-Hwan;Cho, Pyung-Dong;Eun, Chang-Soo;Gimm, Yoon-Myoung
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.175-181
    • /
    • 2009
  • The measurements were performed to verify experimentally that the voltage arising on a telecommunication line by a power line is due to the induction phenomena because there has been an opinion that the arising voltage on a telecommunication line is not by induction, but by other causality. The voltage appeared on the telecommunication line by way of an electric field or magnetic field generated by the source apparatus that had been artificially made to provide intentional constant high-voltage or current in ELF, that is, 60 Hz as an emulated commercial power.

A Study on the Detecting Accuracy of EM Induction Survey Data of Buried Utility (전자유도 탐사를 이용한 지하매설물 탐지 정확도 분석)

  • Kwon, Hyoung-Seok;Choi, Joonho;Hwang, Daejin;Kim, Munjae;Yoon, Jeoungseob
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.4
    • /
    • pp.73-81
    • /
    • 2008
  • Electromagnetic induction surveys are one of the useful methods to detect the location and buried depth of underground utilities by measuring horizontal and vertical magnetic fields. It can effectively detects single buried utility with the accuracy of within 20 cm. However when another utility is buried near to target one, the accuracy of utility location considerably decreases due to the distortion of magnetic fields caused from adjacent utility. This study shows the ways to verify the location and buried depth of target utility when magnetic fields does not show symmetric distribution due to adjacent another utility. Using Bluetooth wireless communication tools, we developed the way to records measured magnetic fields to handheld PDA. We investigated the criteria for minimum distance of two adjacent utilities to separate the individual responses through field model test.

  • PDF

Application of High-Current PLC of Soft Magnetic Core Type Coupler (연자성체 코어형 결합기의 대전류 전력선통신 적용)

  • Jeong, Jae-Hwan;Yang, Seung-Ho;Soh, Kyung-Rak
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.155-155
    • /
    • 2018
  • In this study, we measured the communication performance of inductive coupler under high current condition. Ferrite and nanocrystalline cores were used to compare the available PLC communication range and bandwidth for current fluctuations.

  • PDF

A Review of Assistive Listening Device and Digital Wireless Technology for Hearing Instruments

  • Kim, Jin Sook;Kim, Chun Hyeok
    • Korean Journal of Audiology
    • /
    • v.18 no.3
    • /
    • pp.105-111
    • /
    • 2014
  • Assistive listening devices (ALDs) refer to various types of amplification equipment designed to improve the communication of individuals with hard of hearing to enhance the accessibility to speech signal when individual hearing instruments are not sufficient. There are many types of ALDs to overcome a triangle of speech to noise ratio (SNR) problems, noise, distance, and reverberation. ALDs vary in their internal electronic mechanisms ranging from simple hard-wire microphone-amplifier units to more sophisticated broadcasting systems. They usually use microphones to capture an audio source and broadcast it wirelessly over a frequency modulation (FM), infra-red, induction loop, or other transmission techniques. The seven types of ALDs are introduced including hardwire devices, FM sound system, infra-red sound system, induction loop system, telephone listening devices, television, and alert/alarm system. Further development of digital wireless technology in hearing instruments will make possible direct communication with ALDs without any accessories in the near future. There are two technology solutions for digital wireless hearing instruments improving SNR and convenience. One is near-field magnetic induction combined with Bluetooth radio frequency (RF) transmission or proprietary RF transmission and the other is proprietary RF transmission alone. Recently launched digital wireless hearing aid applying this new technology can communicate from the hearing instrument to personal computer, phones, Wi-Fi, alert systems, and ALDs via iPhone, iPad, and iPod. However, it comes with its own iOS application offering a range of features but there is no option for Android users as of this moment.

Experimental Verification of Induction Phenomenon on Telecommunication Lines by Applying Its Occurrence Mechanisms Using an Artificial ELF Source Generator

  • Lee, Sang-Mu;Gimm, Yoon-Myoung;Eun, Chang-Soo
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.276-281
    • /
    • 2010
  • In this paper, an electromagnetic induction on a telecommunication line by the distribution line of a power provision system or a feeder line of an electrified railway system has been verified through experiments. The basic cause of induction occurrence by these practical power provision systems is the returning current through the earth. This principle has been confirmed by the experiments documented in this paper which implemented these mechanisms to incur an induction. Experimental methods were used to produce the returning current through the earth. The experiment to find a relationship between inducing strength and the distance between the two phase lines in a power provision line has also been included to confirm that, when the distance is enlarged, the induction effect increases as the cross-nullification effect of magnetic fluxes decreases. An experiment for the existence of a shielding effect by another conduction length material has been addedas a protection measure against the induction.