• Title/Summary/Keyword: Magnetic Flux

Search Result 1,729, Processing Time 0.029 seconds

Electrical Properties of a High Tc Superconductor for Renewed Electric Power Energy

  • Lee Sang-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.371-375
    • /
    • 2006
  • Effects of $Ag_2O$ doping on the electromagnetic properties in the BiSrCaCuO superconductor. The electromagnetic properties of doped and undoped $Ag_2O$ in the BiSrCaCuO superconductor were evaluated to investigate the contribution of the pinning centers. It was confirmed experimentally that a larger amount of magnetic flux was trapped in the $Ag_2O$ doped sample than in the undoped one, indicating that the pinning centers of magnetic flux are related closely to the occurrence of the magnetic effect. We have fabricated superconductor ceramics by the chemical process. A high Tc superconductor with a nominal composition of $Bi_2Sr_2Ca_2Cu_3O_y$ was prepared by the organic metal salts method. Experimental results suggest that the intermediate phase formed before the formation of the superconductor phase may be the most important factor. The relation between electromagnetic properties of Bi HTS and the external applied magnetic field was studied. The electrical resistance of the superconductor was increased by the application of the external magnetic field. But the increase in the electrical resistance continues even after the removal of the magnetic field. The reason is as follows; the magnetic flux due to the external magnetic field penetrates through the superconductor and the penetrated magnetic flux is trapped after the removal of the magnetic flux. During the sintering, doped $Ag_2O$ was converted to Ag particles that were finely dispersed in superconductor samples. It is considered that the area where normal conduction takes place increases by adding $Ag_2O$ and the magnetic flux penetrating through the sample increases. The results suggested that $Ag_2O$ acts to amplify pinning centers of magnetic flux, contributing to the occurrence of the electromagnetic properties.

Magnetic Field Sensor by Using Magnetic Effect in YBaCuO Superconductor (BPSCCO 초전도 자성센서)

  • 이상헌
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.137-139
    • /
    • 2003
  • The relationship between magnetic properties of BiPbSrCaCuO superconductor and externally applied magnetic field was studied to develop a magnetic field polarity sensor. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the material by the external magnetic field. Some portion of the superconductor was changed to a normal state by the trapped magnetic flux. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive to the external magnetic field and showed different responses depending on the direction of the magnetic field.

  • PDF

A study on the Measurement of Residual Flux for Transformer (변압기 잔류자속 측정에 관한 연구)

  • Kim, Young-Hak
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.133-138
    • /
    • 2022
  • In previous studies to obtain the residual magnetic flux of the transformer using the leakage magnetic flux, a transfer function was used. The transfer function was consisted with the leakage magnetic flux measured outside the transformer and the residual magnetic flux measured at the moment passing through the two ± residual points. In this study, a method of calculating the ratio of the maximum operating leakage flux to the residual leakage flux was proposed The advantage of this method is to avoid the uncertainty of the transfer function due to current noise. Then, the noise of the sensor was measured to investigate the effect of the drift of the noise on the measurement results. Comparing the residual leakage magnetic flux density with 80nT of the drift noise, 66 times or more at a distance of 10 mm and 5 times or more at a distance of 100 mm were obtained. 100mm was the maximum measurement distance to obtain the residual magnetic flux.

Analysis of Magnetic Field Application Effect on Fault Current Limiting Characteristics of a Flux-lock Type SFCL

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.255-259
    • /
    • 2008
  • The magnetic field application effect on resistance of a high-$T_c$ superconducting (HTSC) element comprising a flux-lock type superconducting fault current limiter (SFCL) was investigated. The YBCO thin film, which was etched into a meander line using a lithography, was used as a current limiting element of the flux-lock type SFCL. To increase the magnetic field applied into HTSC element, the capacitor was connected in series with a solenoid-type magnetic field coil installed in the third winding of the flux-lock type SFCL. There was no magnetic field application effect on the resistance of HTSC element despite the application of larger magnetic field into the HTSC element when a fault happened. The resistance of HTSC element, on the contrary, started to decrease at the point of four periods from a fault instant although the amplitude of the applied magnetic field increased.

Experimental Study on the chuncking Pressure Distribution of Electro-Magnetic Chucks (전자척의 고정압력분포에 관한 실험적 연구)

  • 김청균
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 1996
  • This paper deals with the distributions of magnetic flux of an electro-magnetic chuck which is one of the most commonly used chucking attachments in a surface grinding machine. The measured results showed good correspondence with the theoretical results which were previously presented by the same author. The normal and tangential components of the magnetic flux density were measured using the gauss meter. The measured results indicated that the magnetic flux density was periodically changing over the transverse position to the magnetic pole. The normal component of magnetic flux decreases very rapidly for the increased z position.

  • PDF

Magnetic Properties of BiPbSrCaCuO System (Bi계 초전도체의 자기적 효과)

  • 이상헌
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.355-357
    • /
    • 2002
  • The relationship between magnetic properties of BiPbSrCaCuO superconductor and externally applied magnetic field was studied to develop a magnetic field polarity sensor. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the material by the external magnetic field. Some portion of the superconductor was changed to a normal state by the trapped magnetic flux. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive to the external magnetic field and showed different responses depending on the direction of the magnetic field.

  • PDF

Improvement in Probability of Detection for Leakage Magnetic Flux Methods (누설자속탐상법의 결함검출능력 향상에 관한 연구)

  • Lee, Jin-Yi
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.13-18
    • /
    • 2004
  • It is important to estimate the distribution of intensity of a magnetic field for application of magnetic method to industrial nondestructive evaluation. Magnetic camera provides the distribution of a quantitative magnetic field with homogeneous lift-off and same spatial resolution. Leakage magnetic flux near the crack on the specimen could be amplified by 3-dimensional magnetic fluid and zoom in and out of measurement area. This study introduces the experimental consideration of the effects of lens for concentrating of magnetic flux. The experimental results showed that the magnetic fluid has sufficient lens effect for magnetic camera and effect of improvement in probability of detection.

  • PDF

Magnetic Field Sensor by Using Superconductor (초전도 자기 검출소자)

  • 이상헌
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.86-88
    • /
    • 2002
  • The relationship between electrical properties of superconductor and externally allied magnetic field was studied to develop a magnetic field polarity sensor. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the material by the external magnetic field. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive ta the external magnetic field and showed different responses depending on the direction of the magnetic field. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Magnetic Pinning Effect of High Tc Superconductor (산화은을 첨가한 초전도체의 자기 속박효과)

  • Lee, Sang-Hean
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.4
    • /
    • pp.209-212
    • /
    • 2006
  • The electromagnetic effect observed in a BiSrCaCuO superconductor was studied. The electromagnetic properties of a $Ag_2O$ doped BiSrCaCuO superconductor and an undoped superconductor were evaluated to investigate the contribution of the pinning effect. It was confirmed experimentally that a large amount of magnetic flux was trapped in the $Ag_2O$ doped BiSrCaCuO than that in the undoped one, indicating that the pinning centers of magnetic flux are related closely to the occurrence mechanism of magnetic phenomena. It was considered that by adding $Ag_2O$, the area where normal conduction takes place increases and the magnetic flux penetrating through the sample increases. It also was considered that $Ag_2O$ acts to increase pinning centers of magnetic flux.

Electromagnetic Properties of Bi System Superconductor for Magnetic Levitation Car Maglev

  • Lee, Sang-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.102-105
    • /
    • 2007
  • Effects of $Ag_2O$ doping on the electromagnetic properties in the BiSrCaCuO superconductors. The electromagnetic properties of the $Ag_2O$ doped and undoped BiSrCaCuO superconductor were evaluated to investigate the contribution of the pinning centers to the magnetic effect. It was confirmed experimentally that a large amount of magnetic flux was trapped in the $Ag_2O$ doped sample than that in the undoped one, indicating that the pinning centers of magnetic flux are related closely to the occurrence of the magnetic effect. It is considered that the area where normal conduction takes place increases by adding $Ag_2O$ and the magnetic flux penetrating through the sample increases. The results suggested that Ag acts to increase the pinning centers of the magnetic flux, contributing to the occurrence of the electromagnetic properties.