• Title/Summary/Keyword: Magnetic Filler

Search Result 22, Processing Time 0.028 seconds

A Study on the Removal Method of Radioactive Corrosion Product using its Magnetic Property (방사성 부식생성물의 자기적 성질을 이용한 제거방법에 대한 연구)

  • 송민철;공태영;이건재
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.73-79
    • /
    • 2003
  • In a pressurized water reactor, radioactive corrosion products (CRUD) in primary coolant system are one of the major sources for the occupational radiation exposure of the personnel in a nuclear power plant. Through the recent trend of long term fuel cycle in a nuclear power Plant, radioactive corrosion products deposited in reactor core for a long time are also the cause of Axial Offset Anomaly (AOA) having m effect on reactor power by the hideout of boron. CRUD consist primarily of magnetite, nickel ferrite, cobalt ferrite, and so on. They have the characteristic of strong magnetism. Therefore it is performed the conceptual design to develop the filter which removes the CRUD by magnetic field that is generated by an arrangement of permanent and electric magnets. Contrary to the conventional filter, the proposed filter does not interrupt the fluid flow, so there is little pressure drop and it can be used continuously. It is expected to be applied as one of the technologies for removal of the CRUB.

  • PDF

Magnetic Field Distribution Characteristics of Ring-Shaped Electrodeless Fluorescent Lamp (둥근형 무전극 형광램프의 자계 분포 특성)

  • Choi, Yong-Sung;Cho, Jae-Cheol;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.53-57
    • /
    • 2006
  • In this paper, maxwell 3D finite element analysis program (Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250 kHz and some specific conditions. The electromagnetic field in the ferrite core was shown to be high and symmetric. An LS-100 luminance meter and a Darsa-2000 spectrum analyzer were used in the experiment. According to data on the lamp tested using high magnetic field ferrite, the optical and thermal wave fields were shown to be high around the ring-shaped electrodeless fluorescent lamp. The optical or light field was high at the center of the bulb rather than around the ferrite core. The light conditions of the bulb were assumed to be complex, depending on the condition of the filler gas, the volume of the bulb, and the frequency of the inverter. Our results have shown coupling between the gas plasma and the field of the light emitted to be nonlinear.

  • PDF

Surface Modification of Microcrystalline Cellulose (MCC) Filler for CO2 Capture (CO2 흡착 충전제 제조를 위한 microcrystalline cellulose (MCC) 입자 표면개질연구)

  • Yang, Yeokyung;Park, Seonghwan;Kim, Hanna;Hwang, Ki-Seob;Ha, KiRyong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.60-67
    • /
    • 2017
  • In this study, we performed surface modification of biodegradable microcrystalline cellulose (MCC) to use as a filler in polyethylene (PE) composite in food packaging application. We modified MCC surface with (3-trimethoxysilylpropyl)diethylenetriamine (TPDT) silane coupling agent, which has one primary amino group and two secondary amino groups per molecule, to introduce amino groups with a carbon dioxide adsorption capability in MCC. Effects of each of the reaction conditions such as amount of TPDT introduced, swelling time, reaction temperature, and reaction time on surface modification degree of MCC were investigated by changing a variety of above reaction conditions. The amount of TPDT grafted on MCC surface and formation of chemical bonds were confirmed by Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and solid state $^{29}Si$ nuclear magnetic resonance (NMR) spectroscopy. We confirmed increase of grafted amount of TPDT on MCC with increasing reaction time, reaction temperature, and amount of introduced TPDT.

TheMagneticFieldDistributionAnalysisandOpticalCharacteristicsfortheRing-ShapedElectrodelessFluorescentLamp. (환형무전극형광램프의자계분포해석과광학적특성에관한연구)

  • Jo Ju-Ung;Lee Jong-Chan;Choi Yong-Sung;Kim Yong-Kap;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.6
    • /
    • pp.255-261
    • /
    • 2005
  • Recently, the RF inductive discharge or inductively coupled plasma continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technology. To the point of lighting sources, the ring-shaped electrodeless fluorescent lamps utilizing an inductively coupled plasma have been objects of interest and research during the last decades, mainly because of their potential for extremely long life, high lamp efficacies, rapid power switching response. In this paper, maxwell 3D finite element analysis program (Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250 kHz and some specific conditions. The electromagnetic field in the ferrite core was shown to be high and symmetric. An LS-100 luminance meter and a Darsa-2000 spectrum analyzer were used in the experiment. According to data on the lamp tested using high magnetic field ferrite, the optical and thermal wave fields were shown to be high around the ring-shaped electrodeless fluorescent lamp. The optical or light field was high at the center of the bulb rather than around the ferrite core. The light conditions of the bulb were assumed to be complex, depending on the condition of the filler gas, the volume of the bulb, and the frequency of the inverter. Our results have shown coupling between the gas plasma and the field of the light emitted to be nonlinear.

Effect of Pretreatment of Mine Tailings on the Performance of Controlled Low Strength Materials (저강도 고유동 충전재의 성능에 미치는 광미 전처리의 영향)

  • Tafesse, Million;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.32-38
    • /
    • 2017
  • For the massive recycling of mine tailings, which are an inorganic by-product of mining process, in the field of civil engineering, pretreatments to extract heavy metals are required. This study focuses on the use of pre-treated tailings as substitute fillers for controlled low-strength material (CLSM). As a comparative study, untreated tailing, microwave-treated tailing and magnetic separated with microwaved tailing were used in this study. Cement contents amounting to 10%, 20% and 30% by the weight of the tailings were designed. Both compressive strength and flowability for all types of mixture were satisfied with the requirements of the American Concrete Institute (ACI) Committee 229, i.e., 0.3-8.3 MPa of compressive strength and longer than 200 mm flowability. Furthermore, all mixtures showed settlements less than 1% by volume of the mix.

A Conductive-grid based EMI Shielding Composite Film with a High Heat Dissipation Characteristic (전도성 그리드를 활용한 전자파 흡수차폐/방열 복합소재 필름)

  • Park, Byeongjin;Ryu, Seung Han;Kwon, Suk Jin;Kim, Suryeon;Lee, Sang Bok
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.175-181
    • /
    • 2022
  • Due to the increasing number of wireless communication devices in mmWave frequency bands, there is a high demand for electromagnetic interference (EMI) shielding and heat dissipating materials to avoid device malfunctions. This paper proposes an EMI shielding composite film with a high heat dissipation characteristic. To achieve this, a conductive grid is integrated with a polymer-based composite layer including magnetic and heat dissipating filler materials. A high shielding effectiveness (>40 dB), low reflection shielding effectiveness (<3 dB), high thermal conductivity (>10 W/m·K), thin thickness (<500 ㎛) are simultaneously achieved with a tailored design of composite layer compositions and grid geometries in 5G communication band of 26.5 GHz.

Effect of Processing Factors on the Properties of Melt-blown PP/Ba-ferrite Composite Fabrics (Melt-blown 방사에 의한 PP/Ba-ferrite 복합 부직포 제조시의 공정인자가 부직포의 특성에 미치는 영향)

  • Han, Jong-Hun;Lee, Dong-Jin;Lim, Hyung Mi;Lee, Seung-Ho;Oh, Sung Geoun
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.267-273
    • /
    • 2006
  • We have prepared PP/Ba-ferrite composite fabrics by a melt-blown spinning method and investigated the relationship between the properties of PP/Ba-ferrite composite fabrics and melt-blown processing factors. A PP composite containing Ba-ferrite as a magnetic particulate filler was prepared in the form of pellet from PP resin and Ba-ferrite powder by melt compounding using a single extruder. Screw turning force (rpm), DCD (die-to-collector distance), and Ba-ferrite content were changed. We measured diameters of fiber, mechanical, thermal, and magnetic properties for the composited PP fabrics. The elongation was increased and a fiber diameter and tensile strength were decreased as the spinning distance increased or screw turning force decreased. The crystallinity was increased with increasing spinning distance according to XRD. It was assumed that the orientation of crystalline domain in the neat PP without ferrite was increased by drawing in mechanical direction, however, the orientation in the PP composite was decreased according to XRD analysis. We measured a magnetic property of PP nonwoven fabric containing Ba-ferrite powder. A coercive force, maximum magnetization, and residual magnetization are reduced with the spinning distance. According to the result of TGA measurement, the heat resistance was increased with the Ba-ferrite powder content and with decreasing the spinning distance.

Analytical Techniques for Measurement of Crosslink Densities of Rubber Vulcanizates

  • Son, Chae Eun;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • It is important to analyze crosslink densities of rubber articles because the physical properties are dependent on the crosslink densities. In this paper, analytical techniques for the measurement of crosslink densities of rubber vulcanizates are described. The most widely used method to measure the crosslink density is a swelling method combined with the Flory-Rehner equation. Application of the interaction parameter (${\chi}$) of rubber and swelling solvent is critical because the crosslink density is absolutely dependent on the ${\chi}$ value. Methods for obtaining ${\chi}$ employ not only solubility parameters of the polymer and swelling solvent but also inverse gas chromatography (IGC). The solubilities of rubbers can be obtained using micro differential scanning calorimetry (${\mu}DSC$), intrinsic viscosity measurement, and UV-visible spectroscopy. Nuclear magnetic resonance (NMR) spectroscopy has been also used for the measurement of the crosslink density using the $T_2$ relaxation time, which is determined by spin-spin relaxation in solid-state NMR. For sulfur-cured rubber vulcanizates, crosslink densities according to the crosslink types of mono-, di-, and polysulfides are measured by treating the rubber samples with a chemical probe composed of thiol and amine compounds. Measurement methods of physical crosslinking by filler, crystallization, and ionic bonding have also been introduced.

Effect of Silicotungstic Acid as Inorganic Filler on the Properties of Anion Exchange Composite Membranes (무기첨가제 규소텅스텐산이 음이온교환 복합막 특성에 미치는 영향)

  • LEE, KYU HA;YOO, DONG JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • In this study, we synthesized a poly(pheneylene oxide) (PPO)-based organic/inorganic composite membrane having silicotungstic acid (STA) for the development of an anion exchange membrane with excellent ionic conductivity and physicochemical stability. The organic/inorganic composite membranes were prepared by introducing different STA contents (0 wt%, 10 wt%, 30 wt%, and 50 wt%) into the quaternizaed(Q)-PPO matrix. The prepared anion exchange membranes were subjected to structural analysis by proton neclear magnetic resonance and Fourier transform infrared, and thermal behavior of membranes was confirmed by thermogravimetric analysis. Among the prepared composite membranes, the ion conductivity of Q-PPO/STA-50 (40.5 mS cm-1) showed 1.46 times compared to that of the pristine membrane (27.6 mS cm-1). Therefore, these results demonstrated that organic/inorganic composite membranes are promising candidates for application of anion exchange membranes.

High-Velocity Impact Damage Behavior of Carbon/Epoxy Composite Laminates

  • Kim, Young A.;Woo, Kyeongsik;Cho, Hyunjun;Kim, In-Gul;Kim, Jong-Heon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.190-205
    • /
    • 2015
  • In this paper, the impact damage behavior of USN-150B carbon/epoxy composite laminates subjected to high velocity impact was studied experimentally and numerically. Square composite laminates stacked with $[45/0/-45/90]_{ns}$ quasi-symmetric and $[0/90]_{ns}$ cross-ply stacking sequences and a conical shape projectile with steel core, copper skin and lead filler were considered. First high-velocity impact tests were conducted under various test conditions. Three tests were repeated under the same impact condition. Projectile velocity before and after penetration were measured by infrared ray sensors and magnetic sensors. High-speed camera shots and C-Scan images were also taken to measure the projectile velocities and to obtain the information on the damage shapes of the projectile and the laminate specimens. Next, the numerical simulation was performed using explicit finite element code LS-DYNA. Both the projectile and the composite laminate were modeled using three-dimensional solid elements. Residual velocity history of the impact projectile and the failure shape and extents of the laminates were predicted and systematically examined. The results of this study can provide the understanding on the penetration process of laminated composites during ballistic impact, as well as the damage amount and modes. These were thought to be utilized to predict the decrease of mechanical properties and also to help mitigate impact damage of composite structures.