• 제목/요약/키워드: Magnetic Fields

검색결과 1,462건 처리시간 0.027초

자기장 내의 위상최적화 방법에 대한 연구 - 밀도법과 균질화법의 비교 - (A Study on the Topology Optimization in Magnetic Fields - Comparisons Between the Density Method and the Homogenization Design Method)

  • 유정훈
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.370-377
    • /
    • 2004
  • The density approach and the homogenization design method are representative methods in topology optimization problems. In the topology optimization in magnetic fields, those methods are applied based on the results of the applications In elastic fields. In this study, the density method is modified considering the concept of the homogenization design method. Also, the results of the topology optimization in magnetic fields by the modified density method as well as the homogenization method are compared especially focusing the change of the penalization parameter in the density approach. The effect of the definition of the design domain such as global/local design domain is also discussed.

반원관내 자성유체의 자연대류에 관한 연구 (A Study on the Flow Behavior of Magnetic Fluids in a half Circular Pipe)

  • 황성욱;박정우;서이수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3098-3103
    • /
    • 2007
  • In this paper, natural convection of a magnetic fluids(W-40) in a half circular pipe enclosure are investigated by numerical and experimental method. One side wall is kept at a constant temperature(25$^{\circ}C$), and the opposite side wall is also kept at a constant temperature(20$^{\circ}C$). Under above conditions, various magnitudes of the magnetic fields were applied up. Theoretical study through the governing equation derived by Siliomis is carried out with numerical analysis by the GSMAC Method. And the thermo-sensitive liquid crystal film(R20C5A) is utilized in order to visualize wall-temperature distributions as an experimental method. This study has resulted in the following fact that the natural convection of a magnetic fluids are controlled by the direction and intensity of the magnetic fields.

  • PDF

Magnetic Field Analysis of the Electrode Arc Furnace in Steel Making Foundries

  • Kim, C.W.;Im, J.I.
    • Journal of Magnetics
    • /
    • 제8권2호
    • /
    • pp.79-84
    • /
    • 2003
  • Finite element analysis showed that strong magnetic fields were distributed around the arc furnace where the strongest magnetic fields were generated around the three phase cables. The second and third strongest fields near the arc furnace were found to be generated around the electrodes and the mast-arms, respectively. The generated field intensities were greatly influenced by the mast arm structure of the arc furnace as well as the phase differences and operation currents of the supplied power, Magnetic field decay patterns around the arc furnace could be smoothly fitted by this equation of exponential formula, H=H$0_$+Ae$^{\frac{r}{t}}$. These results revealed that magnetic field intensities around the arc furnace could be estimated at any 3-dimensional position using finite element method (FEM).

EMBR이 적용된 연속주조 몰드 내부에서의 유동장 해석 (A Numerical Study on the Flow Fields in the Continuous Casting Mold with Electromagnetic Brake)

  • 하만영;이현구
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.47-56
    • /
    • 1999
  • We developed a computer program to simulate the flow field in the presence of electro-magnetic fields. The steady, two-dimensional conservation equations for mass and momentum were solved simultaneously with Maxwell equations for electro-magnetic fields. Using this program, a numerical analysis was carried out to analyze the fluid flow in the continuous casting mold with electromagnetic brake. The effects of magnetic fields size, nozzle angle and EMBR yoke position on the flow fields in the continuous casting were investigated in the present study. The flow fields with EMBR were compared with those without EMBR. We also investigated the distribution of tracer concentration as a function of time in order to calculate their residence time in the mold with EMBR. By controlling the flow fields properly using EMBR, we can prevent the direct flow impaction on the wall which can give a damage on the mold surface and reduce surface defects of stainless steel sheet products.

  • PDF

자기력선 그림을 통한 초등학생들의 자기장 개념 조사 (Elementary Students' Conceptions of Magnetic Field by Drawing lines of Magnetic Field)

  • 권성기;신미성
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제26권4호
    • /
    • pp.440-448
    • /
    • 2007
  • The purpose of this study is to examine elementary students' conceptions of magnetic fields around various magnets by drawing tasks. A total of 105 elementary students from the 3rd and 6th grade levels were asked to draw how iron filings would arrange around magnets. We classified their drawings of magnetic field lines with some criteria to identify conceptions of magnetic forces and checked them through interviewing about their representative drawing. Through analyzing drawings, we discovered that 40% of elementary students drew the correct arrangement of iron filings around a bar magnet. In the case of two bar magnets in opposite directions, 33% of them drew correct patterns of iron dust and around two magnets in the same direction only 20% did well. Only 2.9% and 7.6% of students presented the correct drawings of magnetic fields near a disc and a horseshoe magnet. While 3rd grade students were supposed to be poor in drawings of magnetic fields around a loose and a dense coil which was not learned about, only 31% and 23% of 6th grade students who have just studied electromagnetism properly drew patterns of iron dust. This shows that only one quarter of students understood the magnetic filed lines even after instruction of electromagnetism. Many of 6th grade students learned a solenoid becomes just as a permanent magnet, but very few of them correctly drew a magnetic field line could distinguish between the iron dust around a loose and dense coil. After interviewing students, it is found that students consider magnetic forces to be existed only in parts of magnet because many of them drew magnetic field line of a specific areas around magnets. Students had misconceptions that magnetic forces exist only on the poles not in the middle around a horseshoe magnet. Also the disc-shape magnet made students to reveal various types of misconceptions: N- and S-poles are mixed in a whole magnet and right part of a disc-shape magnet is N-pole, left part is S-pole. Students who had not studied magnetic fields of around a magnet and electromagnets could not draw the correct patterns of iron dust suggest that it is indispensable for students to teach how patterns of iron filings would represent a visual image of magnetic fields in order to understand magnetic fields.

  • PDF

The evolution of Magnetic fields in IntraClusterMedium

  • Park, Kiwan;Ryu, Dongsu;Cho, Jungyeon
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.49.2-49.2
    • /
    • 2015
  • IntraCluster Medium (ICM) located at the galaxy cluster is in the state of very hot, tenuous, magnetized, and highly ionized X-ray emitting plasmas. High temperature and low density make ICM very viscous and conductive. In addition to the high conductivity, fluctuating random plasma motions in ICM, occurring at all evolution stages, generate and amplify the magnetic fields in such viscous ionized gas. The amplified magnetic fields in reverse drive and constrain the plasma motions beyond the viscous scale through the magnetic tension. Moreover, without the influence of resistivity viscous damping effect gets balanced only with the magnetic tension in the extended viscous scale leading to peculiar ICM energy spectra. This overall collisionless magnetohydrodynamic (MHD) turbulence in ICM was simulated using a hyper diffusivity method. The results show the plasma motions and frozen magnetic fields have power law of $E_V^k{\sim}k^{-3}$, $E_M^k{\sim}k^{-1}$. To explain these abnormal power spectra we set up two simultaneous differential equations for the kinetic and magnetic energy using an Eddy Damped Quasi Normal Markovianized (EDQNM) approximation. The solutions and dimensions of leading terms in the coupled equations derive the power spectra and tell us how the spectra are formed. We also derived the same results with a more intuitive balance relation and stationary energy transport rate.

  • PDF

Magnetic Czochralski 실리콘 단결정 성장에서 열 및 유체유동과 질량전달에 미치는 비균일 자장의 효과 (Effect of non-uniform magnetic field on the thermal behavior and mass transfer in magnetohydrodynamic Czochralski crystal growth of silicon)

  • 김창녕
    • 한국결정성장학회지
    • /
    • 제8권4호
    • /
    • pp.555-562
    • /
    • 1998
  • 비균일 자장이 도가니에 인가되어 있는 상황에서 정상상태의 Czochralski 유동장과 비정상상태의 산소농도장에 대한 연구가 수치해석적인 방법으로 연구되었다. 여기에서 기준 자장의 세기가 B=0.1T, 0.2T, 0.3T의 경우에 대한 연구가 수행되었다. 가열에 의한 부력의 효과와 자유표면의 표면장력에 의한 열모세관 효과에 의하여 유발되는 자오면 유동은 비균일 자장에 의하여 차등적으로 억제되고 있다. 자자의 세기가 증가하면 자오면 유동에서 발생하는 순환류의 중심은 결정으로 접근하며, 순환류의 크기도 작아진다. 결정으로 흡수되는 산소의 세기가 클수록 낮아지며 농도분포는 균일해지는 경향을 갖는다.

  • PDF

Magnetization of the stack of HTS tapes

  • Osipov, M.A.;Abin, D.A.;Pokrovskiy, S.V.;Mineev, N.A.;Rudnev, I.A.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권1호
    • /
    • pp.21-24
    • /
    • 2015
  • New results of dependence of magnetic field, trapped by a stack of HTS tapes, on amount of tapes in a stack are reported. Commercial GdBCO tape 12 mm width and without Cu layer was used for the research. Tape was divided in square pieces $12{\times}12mm^2$ from which stacks were formed. Filling factor of the tape was about 1.4%. Measurements were carried out for stacks with height from 5 to 250 pieces and at wide temperature range from liquid helium to liquid nitrogen. Both FC (field cooling) and ZFC (zero field cooling) cooling methods were used in the research. These two methods show matching results with good accuracy. As a result dependences of trapped magnetic flux on amount of tapes for different temperatures were received. Research shows, that with increasing height of the stack trapped magnetic field value reach saturation at about 60 tapes in a stack for low temperatures. From 60 to 100 tapes increase of magnet flux is only 5%. Thus increase amount of tapes in a stack is not profitable. Also investigation of trapped magnet field relaxation was carried out. Relaxation speed decreases with increasing amount of elements. It means that the higher the stack is, the longer trapped flux will be held in cause of the same temperature.

Diamagnetic Shift of a InGaP-AlInGaP Semiconductor Single Quantum Well under Pulsed-magnetic Fields

  • Choi, B.K.;Kim, Yongmin;Song, J.D.
    • Applied Science and Convergence Technology
    • /
    • 제24권5호
    • /
    • pp.156-161
    • /
    • 2015
  • Application of magnetic fields is important to characterize the carrier dynamics in semiconductor quantum structures. We performed photoluminescence (PL) measurements from an InGaP-AlInGaP single quantum well under pulsed magnetic fields to 50 T. The zero field interband PL transition energy matches well with the self-consistent Poisson-$Schr{\ddot{o}}dinger$ equation. We attempted to analyze the dimensionality of the quantum well by using the diamagnetic shift of the magnetoexciton. The real quantum well has finite thickness that causes the quasi-two-dimensional behavior of the exciton diamagnetic shift. The PL intensity diminishes with increasing magnetic field because of the exciton motion in the presence of magnetic field.