• Title/Summary/Keyword: Magnetic Couple

Search Result 52, Processing Time 0.032 seconds

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.145-153
    • /
    • 2019
  • Modified couple stress formulation and first order shear deformation theory are used for magneto-electro-elastic bending analysis of three-layered curved size-dependent beam subjected to mechanical, magnetic and electrical loads. The governing equations are derived using a displacement field including radial and transverse displacements of middle surface and a rotation component. Size dependency is accounted based on modified couple stress theory by employing a small scale parameter. The numerical results are presented to study the influence of small scale parameter, initial electric and magnetic potentials and opening angle on the magneto-electro-elastic bending results of curved micro beam.

Effect of pre-magneto-electro-mechanical loads and initial curvature on the free vibration characteristics of size-dependent beam

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This paper studies application of modified couple stress theory and first order shear deformation theory to magneto-electro-mechanical vibration analysis of three-layered size-dependent curved beam. The curved beam is resting on Pasternak's foundation and is subjected to mechanical, magnetic and electrical loads. Size dependency is accounted by employing a small scale parameter based on modified couple stress theory. The magneto-electro-mechanical preloads are accounted in governing equations to obtain natural frequencies in terms of initial magneto-electro-mechanical loads. The analytical approach is applied to investigate the effect of some important parameters such as opening angle, initial electric and magnetic potentials, small scale parameter, and some geometric dimensionless parameters and direct and shear parameters of elastic foundation on the magneto-electro-elastic vibration responses.

HYDROMAGNETIC FLUCTUATING FLOW OF A COUPLE STRESS FLUID THROUGH A POROUS MEDIUM

  • Zakaria, M.
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.175-191
    • /
    • 2002
  • The equations of a polar fluid of hydromagnetic fluctuating through a porous medium axe cast into matrix form using the state space and Laplace transform techniques the resulting formulation is applied to a variety of problems. The solution to a problem of an electrically conducting polar fluid in the presence of a transverse magnetic field and to a problem for the flow between two parallel fixed plates is obtained. The inversion of the Laplace transforms is carried out using a numerical approach. Numerical results for the velocity, angular velocity distribution and the induced magnetic field are given and illustrated graphically for each problems.

A modified couple-stress magneto-thermoelastic solid with microtemperatures and gravity field

  • Samia M. Said;Elsayed M. Abd-Elaziz;Mohamed I.A. Othman
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.475-485
    • /
    • 2023
  • The present study deals with wave propagation in a modified couple-stress generalized thermoelastic solid under the effect of gravity and magnetic field. The problem is solved by a refined microtemperatures multi-phase-lags thermoelastic theory. The Fourier series and Laplace transforms will be used to obtain the general solution for any set of boundary conditions. Some comparisons have been shown in figures to estimate the effects of the gravity field, the magnetic field, and different theories of thermoelasticity in the presence of the hall current effect on all the physical quantities. Some particular cases of special interest have been deduced from the present investigation.

An Estimation Technology of Temperature Rise in DSES using Three-Dimensional Coupled-Field Multiphysics (연성해석을 이용한 초고압 DSES 온도상승예측)

  • Yoon, Jeong-Hoon;Ahn, Heui-Sub;Choi, Jong-Ung;Park, Seok-Weon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.847_848
    • /
    • 2009
  • This paper shows the temperature rise of the high voltage GIS bus bar. The temperature rise in GIS bus bar is due to Joule‘s losses in the conductor and the induced eddy current in the tank. The power losses of a bus bar calculated from the magnetic field analysis are used as the input data for the thermal analysis to predict the temperature. The required analysis is a couple-field Multiphysics that accounts for the interactions between three-dimensional AC harmonic magnetic and fluid fields. The heat transfer calculation using the fluid analysis is done by considering the natural convection and the radiation from the tank to the atmosphere. Consequently, because temperature distributions by couple-field Multiphysics (coupled magnetic-fluid) have good agreement with results of temperature rise test, the proposed couple-field Multiphysics technique is likely to be used in a conduction design of the single-pole and three pole-encapsulated bus bar in GIS..

  • PDF

An Estimation Technology of Temperature Rise in GIS Bus Bar using Three-Dimensional Coupled-Field Multiphysics (연성해석을 이용한 초고압 모선부 온도 상승 예측 기술)

  • Yoon, Jeong-Hoon;Ahn, Heui-Sub;Choi, Jong-Ung;Oh, Il-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.675-676
    • /
    • 2006
  • This paper shows the temperature rise of the high voltage GIS bus bar. The temperature rise in GIS bus bar is due to Joule's losses in the conductor and the induced eddy current in the tank. The power losses of a bus bar calculated from the magnetic field analysis are used as the input data for the thermal analysis to predict the temperature. The required analysis is a couple-field Multiphysics that accounts for the interactions between three-dimensional AC harmonic magnetic and fluid fields. The heat transfer calculation using the fluid analysis is done by considering the natural convection and the radiation from the tank to the atmosphere. Consequently, because temperature distributions by couple-field Multiphysics (coupled magnetic-fluid) have good agreement with results of temperature rise test, the proposed couple-field Multiphysics technique is likely to be used in a conduction design of the single-pole and three pole-encapsulated bus bar in CIS..

  • PDF

Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects

  • Khorasani, Mohammad;Eyvazian, Arameh;Karbon, Mohammed;Tounsi, Abdelouahed;Lampani, Luca;Sebaey, Tamer A.
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.331-343
    • /
    • 2020
  • In this paper, based on the CPT, motion equations for a sandwich plate containing a core and two integrated face-sheets have derived. The structure rests on the Visco-Pasternak foundation, which includes normal and shear modules. The piezo-magnetic core is made of CoFe2O4 and also is subjected to 3D magnetic potential. Two face sheets at top and bottom of the core are under electrical fields. Also, in order to obtain more accuracy, the effect of flexoelectricity has took into account at face sheets' relations in this work. Flexoelectricity is a property of all insulators whereby they polarize when subject to an inhomogeneous deformation. This property plays a crucial role in small-scale rather than macro scale. Employing CPT, Hamilton's principle, flexoelectricity considerations, the governing equations are derived and then solved analytically. By present work a detailed numerical study is obtained based on Piezoelectricity, Flexoelectricity and modified couple stress theories to indicate the significant effect of length scale parameter, shear correction factor, aspect and thickness ratios and boundary conditions on natural frequency of sandwich plates. Also, the figures show that there is an excellent agreement between present study and previous researches. These finding can be used for automotive industries, aircrafts, marine vessels and building industries.

Interactions in transversely isotropic new modified couple stress solid due to Hall current, rotation, inclined load with energy dissipation

  • Parveen Lata;Harpreet Kaur
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.21-41
    • /
    • 2024
  • This paper is concerned with the disturbances in a transversely isotropic new modified couple stress homogeneous thermoelastic rotating medium under the combined influence of Hall currents, magnetic fields, and mechanical sources represented by inclined loads. The application of Laplace and Fourier transform techniques are used for the derivation of analytical expressions for various physical quantities. As an application,the bounding surface is subjected to uniformly and linearly distributed force (mechanical force). Present model contains length scale parameters that can capture the size effects. Numerical inversion techniques has been used to provide insights into the system's behavior in the physical domain. The graphical representation of numerical simulated results has been presented to emphasize the impact of rotation and inclined line loads on the system, enhancing our understanding of the studied phenomena. Further research can extend this study to investigate additional complexities and real-world applications.

Influence of Harmonic Modulator Shape on the Cogging Force of Magnetic Gear (고조파 조절기 형상이 자석 기어의 코깅 자기력에 미치는 영향 분석)

  • Kwangsuk, Jung
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2022
  • The reduction ratio of the magnetic gear is determined by the ratio of the number of poles between the high-speed permanent magnet layer and the low-speed permanent magnet layer. In general, it is known that the greater the least common multiple of both poles, the smaller the torque ripple called by cogging of the magnetic force generated in the magnetic gear. However, little is known about the effect of the harmonic modulator that filters the magnetic field in the magnetic gear to magnetically couple the high-speed side and the low-speed side except for the number of poles. In this study, torque ripple characteristics according to changes in modulator shape such as opening ratio and tooth thickness are analyzed using a finite element analysis tool.

A practical approach to handling protein samples under degradation

  • Jeong-Yong, Suh;Sung Hyun, Hong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.4
    • /
    • pp.66-70
    • /
    • 2022
  • Protein structure determination using NMR spectroscopy requires a suite of heteronuclear 3-D NMR experiments that can take a couple of weeks for completion. During the experiments, protein samples may suffer from slow degradation due to co-purifying proteases, which complicates and slows down the assignment procedure. Here we describe a practical protocol to avoid unwanted proteolysis during the experiment.