• 제목/요약/키워드: Magnetic Composite

검색결과 392건 처리시간 0.027초

Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory

  • Amoli, Abolfazl;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.285-294
    • /
    • 2018
  • In this study, nonlinear dynamic response of a concrete plate retrofit with Aluminium oxide ($Al_2O_3$) under seismic load and magnetic field is investigated. The plate is a composite reinforced by Aluminium oxide with characteristics of the equivalent composite being determined using Mori-Tanka model considering agglomeration effect. The plate is simulated with higher order shear deformation plate model. Employing nonlinear strains-displacements, stress-strain, the energy equations of column was obtained and using Hamilton's principal, the governing equations were derived. Differential quadrature method (DQM) in conjunction with Newark method is applied for obtaining the dynamic response of structure. The influences of magnetic field, volume percent of nanoparticles, geometrical parameters of column, agglomeration and boundary conditions on the dynamic response were investigated. Results showed that with increasing volume percent of nanoparticles, the dynamic deflection decreases.

Nano-scale Inter-lamellar Structure of Metal Powder Composites for High Performance Power Inductor and Motor Applications

  • Kim, Hakkwan;An, Sung Yong
    • Journal of Magnetics
    • /
    • 제20권2호
    • /
    • pp.138-147
    • /
    • 2015
  • The unique nano-scale inter-lamellar microstructure and unparalleled heat treatment process give our developed metal powder composite its outstanding magnetic property for power inductor & motor applications. Compared to the conventional polycrystalline Fe or amorphous Fe-Cr-Si-B alloys, our unique designed inter-lamellar microstructure strongly decreases the intra-particle eddy current loss at high frequencies by blocking the mutual eddy currents. The combination of optimum permeability, magnetic flux and extremely low core loss makes this powder composite suitable for high frequency applications well above 10 MHz. Moreover, it can be also possible to SMC core for high speed motor applications in order to increase the motor efficiency by decreasing the core loss.

손실 패턴에 따른 고속 스위치드 릴럭턴스 전동기의 SMC 분말을 이용한 효율 개선 (Strategic Utilization of Soft Magnetic Composite in a High-Speed Switched Reluctance Machine Depending on a Loss Pattern)

  • 이치우
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.323-327
    • /
    • 2017
  • Soft magnetic composite (SMC) material has recently received a significant attention in the area of high-speed machines because of its unique properties such as good design flexibility and low eddy current loss. However, SMC's electromagnetic property is poor compared to silicon steel in terms of saturation, relative permeability, and hysteresis loss. This paper presents a technique for utilization of SMC in two strategic designs of a switched reluctance machine (SRM) depending on a loss pattern. To investigate the effect of SMC's merits and demerits, the stator material is changed from laminated steel to SMC.

Electroactive Conjugated Polymer / Magnetic Functional Reduced Graphene Oxide for Highly Capacitive Pseudocapacitors: Electrosynthesis, Physioelectrochemical and DFT Investigation

  • Ehsani, A.;Safari, R.;Yazdanpanah, H.;Kowsari, E.;Shiri, H. Mohammad
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권4호
    • /
    • pp.301-307
    • /
    • 2018
  • The current study fabricated magnetic functional reduced graphene oxide (MFRGO) by relying on ${FeCl_4}^-$ magnetic anion confined to cationic 1-methyl imidazolium. Furthermore, for improving the electrochemical performance of conductive polymer, hybrid poly ortho aminophenol (POAP)/ MFRGO films have then been fabricated by POAP electropolymerization in the presence of MFRGO nanorods as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of MFRGO and POAP/ MFRGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Prepared composite film exhibited a significantly high specific capacity, high rate capability and excellent cycling stability (capacitance retention of ~91% even after 1000 cycles). These results suggest that electrosynthesized composite films are a promising electrode material for energy storage applications in high-performance pseudocapacitors.

ENHANCED MICROWAVE ABSORPTION OF CNT COMPOSITES MIXING WITH Fe3O4 AND CARBONYL IRON

  • JUNG HYO PARK;JAEHO CHOI;KISU LEE;JINWOO PARK;JUNG KUN SONG;EUNKYUNG JEON
    • Archives of Metallurgy and Materials
    • /
    • 제63권3호
    • /
    • pp.1513-1516
    • /
    • 2018
  • We fabricated two different kinds of composite materials for absorbing microwave in a frequency range of 2 to 18 GHz using coaxial airline and thru-reflect-line (TRL) method. The composite materials having carbon nanotube (CNT) with carbonyl iron (CI) or iron oxide (Fe3O4) were fabricated by mixing each components. Magnetic properties were measured by SQUID equipment. Complex permittivity and complex permeability were also obtained by measuring S-parameters of the toroidal specimen dispersing CI/CNT and Fe3O4/CNT into the 50 weight percent (wt%) epoxy resin. The real permittivity was improved by mixing the CNT however, the real permeability was same as pure magnetic powders. The CI/CNT had a maximum value of real permittivity and real permeability, 11 and 1.4 at 10 GHz, respectively. The CNT composites can be adapted to the radar absorbing materials, band width 8-12 GHz.

고에너지효율 연자성 복합 분말 소재의 연구개발 동향 (Research Trend of Soft Magnetic Composite Materials with High Energy Efficiency)

  • 김휘준
    • 한국자기학회지
    • /
    • 제21권2호
    • /
    • pp.77-82
    • /
    • 2011
  • 우리 삶의 질을 좌우하는 전자기 기기의 고기능화, 자동화, 소형화 추이에 따라 사용량이 급격히 증가하고 있는 연자성 소재로서 가장 널리 사용되고 있는 전기강판과 에너지 고효율화라는 시대의 요구에 따라 새롭게 부상되고 있는 연자성 복합 분말 소재에 대해 각 연자성 소재 분야에서 철손 제어 인자 및 이들 인자들의 제어 방안에 대해 문헌을 고찰했다. 전기강판에서는 히스테리시스 손실을 낮추기 위해 정련공정을 통해 자구이동을 방해하는 결함을 제거하고 결정립의 크기를 최적화하고 있으며, 와전류 손실의 감소를 위해 합금첨가원소를 통해 비저항을 높이고 판재의 두께를 박판화하고 있다. 이와 동시에 코팅을 통해 자구의 이동이 용이하도록 응력의 방향 및 크기를 제어하며, 압연기술과 열처리 기술을 통해 집합조직을 최적화하여 고투자율 및 저철손을 동시에 충족시켜 나가고 있다. 연자성 복합 분말 소재의 경우, 분말 표면의 복합화를 통해 철계 조성, 코팅, 윤활재 및 바인더, 성형 및 열처리 조건 등에 복합적으로 의존하는 연자성 코어의 최종 자기특성을 제어하고 있다. 온간 및 다단 성형과 같은 새로운 성형공정, 2단 소둔/자성 열처리와 같은 소둔 조건, 나노결정질, 비정질 및 벌크 비정질 등과 같은 새로운 조성, 적절한 코팅층의 변수들을 최적화할 경우, 연자성 복합 소재의 자성특성은 향상될 것으로 기대된다.

강자성-강유전성 복합체를 활용한 자기-기계-마찰전기 변환 발전소자 (Magneto-Mechano-Triboelectric Generator Enabled by Ferromagnetic-Ferroelectric Composite)

  • 임예슬;황건태
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.112-117
    • /
    • 2024
  • The Internet of Things (IoT) device is a key component for Industry 4.0, which is the network in homes, factories, buildings, and infrastructures to monitor and control the systems. To demonstrate the IoT network, batteries are widely utilized as power sources, and the batteries inevitably require repeated replacement due to their limited capacity. Magneto-mechano-electric (MME) generators are one of the candidate to develop self-powered IoT systems since MME generators can harvest electricity from stray alternating current (AC) magnetic fields arising from electric power cables. Herein, we report a magneto-mechano-triboelectric generator enabled by a ferromagnetic-ferroelectric composite. In the triboelectric nylon matrix, a ferromagnetic carbonyl iron powder (CIP) was introduced to induce magnetic force near the AC magnetic field for MME harvesting. Additionally, a ferroelectric ceramic powder was also added to the MME composite material to enhance the charge-trapping capability during triboelectric harvesting. The final ferromagnetic-ferroelectric composite-based MME triboelectric harvester can generate an open-circuit voltage and a short-circuit current of 110 V and 8 μA, respectively, which were enough to turn on a light emitting diode (LED) and charge a capacitor. These results verify the feasibility of the MME triboelectric generator for not only harvesting electricity from an AC magnetic field but also for various self-powered IoT applications.

Preparation and pH-Sensitive Release Behavior of Alginate/Activated Carbon Composite Magnetic Hydrogels

  • Han, Min-Hee;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • 제11권2호
    • /
    • pp.122-126
    • /
    • 2010
  • The alginate-based hydrogel was prepared as a pH-sensitive drug delivery system. To enhance the drug loading capacity, activated carbon was introduced as a drug absorbent. The iron oxide was incorporated into the alginate matrix for the magnetic transferring to the target organ. The activated carbon and iron-oxide were dispersed uniformly in the alginate hydrogel. The drug release from the alginate/activated carbon composite hydrogel was carried out in various pH conditions with vitamin B12 and Lactobacillus lamnosers as model drugs. The fast and sustainable release of drug was observed in the basic condition due to the pH-sensitive solubility of alginate. The novel drug delivery system having pH-sensitive release property and magnetic movement to target place was developed by using the alginate/activated carbon composite magnetic hydrogels.

Design and Analysis for Loss Reduction of High-Speed Permanent Magnet Motor using a Soft Magnetic Composite

  • Lee, Sung-Ho;Kim, Yong-Jae;Lee, Kyu-Seok;Kim, Sung-Jin
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.444-449
    • /
    • 2015
  • Soft magnetic composites (SMCs) are especially suitable for the construction of low-cost, high-performance motors with 3-D magnetic fields. The main advantages of SMCs is that the iron particles are insulated by the surface coating and adhesive used for composite bonding, the eddy-current loss is much lower than that in laminated steels, especially at higher frequencies, and the hysteresis loss becomes the dominant component of core losses. These properties enable machines to operate at higher frequencies, resulting in reduced machine size and weight. In this paper, 3-D topologies are proposed that enable the application of SMCs to effectively reduce losses in high-speed permanent magnet (PM) motors. In addition, the electromagnetic field characteristics of the motor topologies are evaluated and compared using a non-linear finite element method (FEM) based on 3-D numerical analysis, and the feasibility of the motor designs is validated.

자기장 및 열하중을 받는 복합재료 판의 동적 특성 (Dynamic Characteristics of Composite Plates Subjected to Electromagnetic and Thermal Fields)

  • 김성균;이근우;문제권;최종운;김영준;박상윤;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제21권6호
    • /
    • pp.536-545
    • /
    • 2011
  • Structural model of laminated composite plates based on the first order shear deformable plate theory and subjected to a combination of magnetic and thermal fields is developed. Coupled equations of motion are derived via Hamilton's principle on the basis of electromagnetic equations (Faraday, Ampere, Ohm, and Lorentz equations) and thermal ones which are involved in constitutive equations. In order to reveal the implications of a number of geometrical and physical features of the model, free vibration of a composite plate immersed in a transversal magnetic field and subjected to a temperature gradient is considered. Special coupling effects between the magnetic-thermal-elastic fields are revealed in this paper.