• Title/Summary/Keyword: Magnetic Clutch

Search Result 29, Processing Time 0.027 seconds

Design and Control of MR Fan Clutch for Automotive Application (차량용 MR 팬 클러치 설계 및 제어)

  • Kim, Eun-Seok;Son, Jeong-U;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.633-638
    • /
    • 2009
  • This paper presents an optimal design of a magnetorheological(MR) fan clutch based on finite element analysis and also presents torque control of engine cooling fan using a sliding mode control. The MR fan clutch is constrained in a specific volume and the optimization problem identifies the geometric dimension of the fan clutch that minimizes an objective function. The objective function for the optimization problem is determined based on the solution of the magnetic circuit of the initially designed clutch. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. After describing the configuration of the MR fan clutch, the viscous torque and controllable torque are obtained on the basis of the Bingham model of MR fluid. Then, a sliding mode controller is designed to control the torque of the fan clutch according to engine room temperature and control performance is evaluated through computer simulation.

  • PDF

Design Analysis and Experimental Evaluation of an MR Fluid Clutch (자기장 및 유동 해석을 이용한 자기유변 클러치의 성능 예측 및 검증)

  • Lee, U-Seop;Kim, Tae-Gyun;Heo, Nam-Geon;Jeon, Do-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2143-2150
    • /
    • 2000
  • An MRC(Magneto-rheological Clutch) has a great potential of application because of its good transmissibility, little wear-out and fast response to electrical control signal. Though many MRCs have been developed for years, there has not been an research on the method to predict the performance of MRC except the simplified mathematical models. But the simplified mathematical models do not fit well since their performance has close relations with shapes of clutches and viscosity distribution throughout the fluids caused by applied magnetic fields. in this study, the CFD and FEM analyses were applied to various shape of MRC and the methods were examined in experiments.

Study on Torque Analysis and Armature Shape Optimization of Electromagnetic Clutch by Using FEM (FEM을 이용한 Electromagnetic Clutch 토크해석과 전기자 치수최적화)

  • Piao, Changhao
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.245-249
    • /
    • 2006
  • This study tries to test and analyze the static friction torque generated by an electromagnetic clutch. Then the torque is improved by optimizing the shape of armature. For the purpose of design change and optimization of the electromagnetic clutch, the static friction torque prediction is very important. We construct an axi symmetric FEM model for analyzing the static friction torque and used a torque tester for evaluating the real torque. For a test, predicted static friction torque is compared with the experimental one to discuss the rationality of torque analysis process. The analytical result agrees well with experimental data, explaining the validity of the mathematical process and FEM model. After confirming the torque analysis process, the optimization process is investigated. The optimization result shows that the static torque is improved by changing the armature shape.

Study to Improve Torque of Electromagnetic Clutch by Using FEM (유한요소법을 이용한 전자석클러치의 토크향상에 대한 연구)

  • 박창호;조종두;이상우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.395-402
    • /
    • 2003
  • In this paper, we try to analyze the torque of electromagnetic clutch by using FEM. For Analysis of the magnetostatic field, we constitute axi-symmetric FEM model of an electromagnetic clutch. By resorting to the theory of magnetic circuits, we obtain a solution of theoretical torque to compare with the result of numerical analysis. From the result of numerical analysis, the air gap of electromagnetic clutch between armature and rotor is important to influence on the torque and the torque changes with the air gap of 0.2mm∼0.1mm Also we observe the characteristic of the torque by changing the relative permeability of each parts. Finally an optimized design of the electromagnetic clutch is proposed.

  • PDF

Study on Torque Analysis of Micro-Electromagnetic Clutch by Using FEM (FEM을 이용한 Micro-Electromagnetic Clutch 토크해석)

  • Piao Changhao;Cho Chongdu;Kim Myunggu;Pan Qiang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.60-65
    • /
    • 2005
  • This study tries to analyzes the static friction torque that generated in a micro-electromagnetic clutch by using FEM. For the purpose of design change and optimization of the micro-electromagnetic clutch, the static friction torque prediction is very important. We construct the axi symmetric FEM model for analyze the static friction torque and the real material properties are substituted to the FEM model. For a test, predicted static friction torque is compared with experimental one to discuss the rationality of torque analysis process. The analytical result agrees well to experimental data. explaining the validity of the mathematical process and FEM model.

Optimal Design of Multi-Plate Clutch Featuring MR Fluid (MR 유체를 적용한 Multi-Plate Clutch의 최적설계)

  • Park, Jin-Young;Kim, Young-Choon;Oh, Jong-Seok;Jeon, Jae-Hoon;Jeong, Jun-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2020
  • 4WD technology is being actively applied to passenger cars. Therefore, dry multi-plate clutches are used for transfer cases. On the other hand, dry clutches have problems related to large vibrations and poor ride quality. To solve this problem, this paper proposes a multi-plate clutch with an MR fluid. When fastening the multi-plate clutch in the transfer case, the proposed MR clutch was applied to reduce the shock and friction, which is a key component in a four-wheel-drive system. MR multi-plate clutch has a fluid coupling mode and a compression mode. A torque model equation was derived for the optimal design. The analysis was performed using Ansys Maxwell to optimize the design parameters of the multi-plate clutch. Electromagnetic field analysis confirmed the strength of the magnetic field when the number of disks and plates were changed, and the maximum strength of the magnetic field was 0.45 Tesla. By applying this to the torque equation, the spacing between the plates was 2 mm, and the inner and outer diameters of the plates were selected to be 45 mm and 55 mm, respectively. Overall, this paper proposes an optimal design technique to maximize the performance of an MR multi-plate clutch.

Finite element analysis of magnetic clutch using adaptive mesh refinement technique (적응요소분할법에 의한 자기클러치 전자력의 유한요소해석)

  • Kim, Han;Ahn, Chang-Hoi
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.112-114
    • /
    • 1996
  • In this paper a simple mesh refinement technique for finite element method is proposed using error estimation only on the material boundaries. The boundary errors are estimated by the continuity conditions of normal B field and tangential B field. From the error estimation fine meshes are accomplished on the boundary and propagate to the near region by Delanunay mesh tessellation. This adaptive mesh refinement technique is applied to the force calculation of magnetic clutch composed by several material regions and makes good convergence.

  • PDF

Voltage Sags Impact on CAR and SOR of HANARO

  • Kim, Hyung-Kyoo;Jung, Hoan-Sung;Wu, Jong-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.657-658
    • /
    • 2004
  • The reactor protection system (RPS) of HANARO is a safety class system. The reactor is tripped by dropping four shut off rods (SOR). The SOR system consists of a SOR, hydraulic pump, hydraulic cylinder, solenoid valves and a power supply unit which has the AC coil contactor as a switching component. The hydraulic pump lifts up the SOR. The SOR drops by loss of the hydraulic pressure in the hydraulic circuit at the occurrence of voltage sags or interruptions. From this experiment, we knew that the magnitude of the voltage sag which impacts on this system is 70V, 500msec. The reactor regulation system (RRS) of HANARO has four CARs which are connected to the driver through a magnetic clutch. The CAR drops by loss of electromagnetic force of the magnetic clutch when the deeper voltage sags to lower than 10V, 500msec.

  • PDF

Screw Transformation Mechanism of Screw-Propelled Robot for Efficient Void Detection in Grease Pipe (스크류 추진형 검측 로봇의 효율적인 검측을 위한 스크류 구조 변화 메커니즘)

  • Kim, Dongseon;Kim, Hojoong;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.172-177
    • /
    • 2022
  • In general, detection robots using ultrasonic sensors are equipped with sensors to protrude outward or to contact objects. However, in the case of a screw-propelled robot that detects the inside of a reactor tendon duct, if the ultrasonic sensor protrudes to the outside, resistance due to grease is generated, and thus the propulsion efficiency is reduced. In order to increase the propulsion efficiency, the screw must be sharp, and the sharper the screw, the more difficult it is to apply a high-performance ultrasonic sensor, and the detection efficiency decreases. This paper proposes a screw shape-changing mechanism that can improve both propulsion efficiency and detection efficiency. This mechanism includes an overlapped helical ring (OHR) structure and a magnetic clutch system (MCS), and thus the shape of a screw may be changed to a compact size. As a result, the Screw-propelled robot with this mechanism can reduce the overall length by about 150 mm and change the shape of the screw faster and more accurately than a robot with a linear actuator.

The Detection of Defects in Ferromagnetic Materials Using Magneto-Optical Sensor (자기광학센서를 이용한 강자성체 결함 탐상)

  • Kim, Hoon
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.52-57
    • /
    • 2004
  • A new non-destructive inspection technique has been developed. One characteristic of the technique is that defects are visualized by laser ray. Magnetic domains and domain walls of a magneto-optical sensor(MO sensor) are varied by the magnetic flux leaked by defects, and the variations are observed by the reflected light of the laser ray. The information of defect can remotely be inspected by this technique in a real time. This paper describes the results estimated on the 2-dimensional surface defects and opposite-side defects in a ferromagnetic material and the natural surface defect in a clutch disk wheel. The light region of a visible image and the magnitude of a reflected light increases as the input current of the magnetizer increases. The natural surface defect, that has not the width of crack's open mouth, can be also visualized like as 2-dimensional artificial defects.

  • PDF